

FINGERCHIP SOFTWARE DEVELOPMENT
KIT (SDK)

From: v14.00

This document describes the software interface used by application
developers to create an application using a FingerChip device connected to
a PC. It includes:
��The detailed specifications of the software interface between the

application and the Dll.
��Information for driver developers

The SDK is composed of:
• this document: Document\An31_SDK.pdf
• Sdk_sources\ contains the source code of FC_Training application.

Starting with this application is the convenient way to learn how to use
of the Dll and the drivers.

• Delivery\: contains the files installed by the Demonstration Kit Setup.
FC_Demo.exe, FC_Mouse.exe, FC_Parameters.exe and
FC_Training.exe in <Chosen target directory>
FingerChip.dll in <WINSYSDIR>
An33_appli.pdf in <Chosen target directory>\Documentation
FCGene.sys, FCUSB.sys, bioload.sys and Usbbiok.sys in
<WINDIR>\System32\Drivers
FCGene.inf, Fcusb.inf, Bioki.inf and Biokiloader.inf in
<WINDIR>\Inf
(for example, with Windows 98, <WINSYSDIR> is
Windows\System, and <WINDIR> is Windows)
Ethernet configuration file (used with AT77C104) in <Chosen
target directory> (DHCP.exe)

This SDK has to be used for any new development (the release 11.xx is
now abandoned). This SDK does not apply for Pocket PCs or any PDA-
like embedded device. Another SDK exists, adapted to this kind of
devices.

The SDK contains the driver and the DLL and the Setup sources, which
also initialize FingerChip Windows’s registry keys.

Biometrics
FingerChipTM

Application
Note

(AN-31)

AN 31-06/03

2 Biometrics FingerChipTM

AN 31-06/03

Primary development tool
��Visual C++ 6.0 from Microsoft

ARCHITECTURE OVERVIEW

The following scheme shows the FingerChip system architecture, from the FingerChip silicon to the high
level applications.

Hardware

FingerChip
Drivers

(one for each hardware)

Dll

Image slices Iocontrols

 Movement
 detection

Uncompress

Application
level

//2USB
chip FingerChip

AT77C103
(Native USB)

Reconstruct

Your
application

FC_parameters FC_Training

FingerChip
AT77C101

 Slices

Displacement
computation

Uncompress Uncompress

This architecture has been driven by cost and performance aspect. The hardware is reduced to its minimum
(FingerChip and USB device) for cost reduction. The direct consequence is a complexity transfer to the
software component, mainly on the driver. For performance reason, the acquisition is executed in kernel
mode while the data treatment is performed in user mode, insuring a better performance for acquisition
(“stop and go” during the critical acquisition time will not occur because of a user program).

Biometrics FingerChipTM

 3
AN 31-06/03

For AT77C104 reader the architecture is:

Hardware

Linux
Embedded
Software

Dll

Application
level

FingerChip
AT77C104

FC_parameters FC_Training

Navigation
control

Ethernet communication

Acquisition & Navigation control

Hardware Abstraction Layer

Image
acquisition

Ethernet communication

Navigation
driver

Note that the Dll is fully hardware independent.
Please pay attention to these special programs:
��FC_Parameters is an application used to set default parameters of the FingerChip depending on the

demonstrator’s part number. It also enables the adjustment of some basic parameters that are not
frequently changing such as rotation of image, temperature adjustment strategy…

��FC_Training: is a sample application that simply acquires fingerprints in a loop. This application is very
useful to check if the device is working properly.

4 Biometrics FingerChipTM

AN 31-06/03

DLL USAGE

This chapter describes how to use the Dll. It includes the user software configuration management (how and
where are stored the Dll user parameter), the detailed software interface (Dll API) and the upper application
architecture. This last point explains the multi-thread application architecture to implement in order to
correctly handle the Dll.

User Software Configuration
Each driver must have a key entry. Besides, the Dll has an associated key entry too.
Dll handles the user software configuration, not the application. It is under the Dll responsibility to save and
restore the user configuration between two sessions.
The user software configuration is stored in the Windows registry. When the Dll is loaded, the data stored in
the Windows registry are restored into shared structures (these structures are defined later). The structures
are shared between the different instances of the Dll. The values of these structures are modified each time
the user changes a parameter (using FC_SetSoftwareConfiguration () or FC_SetDeviceInfo ()); all the
applications using this Dll immediately use the updated shared structures. At the Dll unload, the shared
structures are backup into the Windows registry.
Note that there is no synchronization at runtime between the Windows registry and the shared structures in
the Dll.
If the user changes the value of the parameters directly in the Windows registry, the modification will take
effect at the next load of the Dll (if the software configuration backup has not overwritten the modified
value). It is recommended to initialize registry keys only when the software is being installed: the sdk
contains an example of registry keys initialization done with InstallShield Professional.

Biometrics FingerChipTM

 5
AN 31-06/03

API Overview
This chapter presents the API functions, with their parameters and returned status, and explains how to
convert these returned error code into human readable message.
The API provides two sets of functions:
��The normal one that should be used by any application such as open/reset the device, get an image, get

navigation information (for devices allowing it), close the device.
��The advanced one that enables to perform rather unusual operations such as “get some slices”,

reconstruct an image from already acquired slices, output traces for debug purpose.
Note that all the functions proposed in the API are synchronous. Refer to Recommended Application
Architecture paragraph for the details and the consequences of these synchronous function calls.

Functions
First, you will need to open and close the device, using:

��FC_OpenDevice()
��FC_CloseDevice()

To obtain navigation and click information, the user will call
��FC_StartNav()
��FC_GetNav()
��FC_StopNav()

To obtain a fingerprint image, the user will call
��FC_GetImage()

The following function kills the current acquisition process. It can be called at any time in order to keep
control of the system:

��FC_StopAcquisition()
If a warning or an error occurs, it is recommended to use the function

��FC_FormatMessage()
That will return an English string explaining the error. This will be very useful to the user to make the
appropriate action, without having to process all the cases. In case of new error codes, this will insure to be
properly processed without having to compile again the application.
If you need to get some parameter information (such as the pitch of the sensor), or change some parameters
(such as mirror the image), you will use the functions to read/write the structures t_FC_DeviceInfo and
t_FC_softwareConfiguration. Note that the t_FC_SliceInfo and t_FC_Imageinfo structures are returned if
specified by the function that modify them.

��FC_GetSoftwareConfiguration()
��FC_SetSoftwareConfiguration()
��FC_GetDeviceInfo()
��FC_SetDeviceInfo()

The structure t_FC_DeviceInfo contains information that can not be modified if a device is active. The direct
consequence is that the function FC_SetDeviceInfo() returns an error code ‘FC_Busy’. To solve this
problem, you must close the device (FC_CloseDevice()) before using FC_SetDeviceInfo().
The temperature management uses the following specific routines to access the parameters. Note that a
separated thread is running once the Dll is loaded to control the temperature.

��FC_GetCurrentTemperature()
��FC_SetTemperatureManagement()

For some demonstrator, the led can be controlled by software, at the Dll level, to indicate that the device is
waiting for a finger or to show that the thermal regulation is active.

��FC_SetLedMode()

6 Biometrics FingerChipTM

AN 31-06/03

Some special acquisition functions are provided to just read some slices without any reconstruction, to detect
if a finger is present on the FingerChip:

��FC_IsFinger()
��FC_GetSlices()

For debug purpose, a function enables to get a trace of the current process, and also to reconstruct an image
with given slices (no acquisition performed):

��FC_DebugFileGeneration()
��FC_ReconstructImage()

Structures
Some of the API functions parameters are based on structures.
Four structures are defined to set and/or obtain detailed information about the system, the image or the
slices. In some cases, it is not possible to modify a data, and particularly during an acquisition.

��t_FC_DeviceInfo : hardware and miscellaneous information.
��t_FC_SliceInfo : returns information of the last acquisition
��t_FC_ImageInfo : returns information about the last reconstructed image
��t_FC_SoftWareConfiguration : set some basic parameters such as rotation, thermal
��t_FC_NavigationInfo : returns information of navigation and click

Managing error codes
As mentioned earlier, each Dll function returned code can be translated into human readable string with the
function FC_FormatMessage(). The error codes answer to specific rules, which define several error code
ranges with equivalent seriousness. Refer to 0
Navigation information
The structure t_FC_NavigationInfo contains all the information concerning navigation.

t_FC_NavigationeInfo

Parameter name Type Details Update User

reserved unsigned short reserved No. Update by Dll

reserved unsigned short reserved No. Update by Dll

lXDisplacement long Horizontal displacement from the last
function call

No. Update by Dll

lYDisplacement long Vertical displacement from the last
function call

No. Update by Dll

reserved unsigned long reserved No. Update by Dll

Status Code paragraph for the implementation details.

Biometrics FingerChipTM

 7
AN 31-06/03

Detailed API description

Functions
Open a device

This function performs all the hardware initialization on the connected device. Besides, this function verifies
the accessibility to the Dll to ensure that the Dll is not already used. This function can be called whenever
the application needs to test the hardware.

Prototype short FC_OpenDevice (void)

Description Open the device, initialize and synchronize the hardware and then check if the
hardware is working: consistent test, automatic threshold detection, speed
measurement, mean noise computing….

Parameters None

Return
Value

Short • FC_OK if everything is OK. See Status Code chapter or
FC_error.h for a full list of errors.

Close a device

This function must be called when the application terminates. It releases allocated memory and allow other
processes to access the device.

Prototype short FC_CloseDevice (void)

Description Close the hardware.

Parameters None

Return
Value

Short • FC_OK if done. See Status Code chapter or FC_error.h
for a full list of errors

Get navigation information
This function must be called to enter navigation mode.

Prototype short FC_StartNav ()

Description This function starts the collection of navigation information.

Parameters none

Return
Value

short • FC_OK if done. See Status Code chapter or
FC_error.h for a full list of errors

This function must be regularly called and returns information about changes since previous call.

8 Biometrics FingerChipTM

AN 31-06/03

Prototype short FC_GetNav (t_FC_NavigationInfo * pNavigationInfo)

Description This function provides navigation information..

Parameters t_FC_NavigationInfo *
pNavigationInfo

Pointer to the navigation information.

Return
Value

short • FC_OK if done. See Status Code chapter or
FC_error.h for a full list of errors

This function must be called to quit navigation mode.

Prototype short FC_StopNav ()

Description This function ends the collection of navigation information.

Parameters none

Return
Value

short • FC_OK if done. See Status Code chapter or
FC_error.h for a full list of errors

Format Message
This function returns English human readable string that explains the input status code. Use this function
whenever you get a warning or an error in order to warn the user.

Prototype short FC_FormatMessage (short retVal,
 unsigned char *pMessage,
 unsigned long messageSize);

Description This function translates a status code to a string.

retVal Return code to translate

pMessage Pointer on the message to fill

Parameters

messageSize Size of the message buffer to fill (in bytes)

Return
Value

short • FC_OK
• FC_NOT_INITIALIZED if parameters are not correct

• FC_TRUNCATED_MESSAGE if the buffer is too
small

Fingerprint image grabbing

The FC_GetImage function performs the image grabbing. This function provides an entire image of the
detection. It assumes the application has allocated enough memory for the image.

Biometrics FingerChipTM

 9
AN 31-06/03

Prototype short FC_GetImage (unsigned char *pImage,
 unsigned short xImage,
 unsigned short yImage,
 t_FC_Imageinfo * pImageInfo)

Description This function waits for a finger (no more than the timeout parameter), acquires the
slices and reconstructs an image.

Parameters unsigned char *pImage

unsigned short xImage

unsigned short yImage

t_FC_Imageinfo *
pImageInfo

Pointer to the image memory

Width in pixels of the requested image

Height in pixels of the requested image

Write-only structure that returns information on the
acquired image. If NULL, this parameter is ignored

Return
Value

short • FC_OK if done. See Status Code chapter or
FC_error.h for a full list of errors

The pointer to the image memory must point to a correct memory area, at least the size of the requested
image.
The image depth is 256 gray level per pixel (0 is black, 255 is white).
The first byte of the image memory contains the upper left pixel. Use flip/mirror/rotation parameters if you
want to change the orientation.

Stop acquisition
This function allows the application to stop the acquisition without waiting the end of the task. It can be
called at any time.

Prototype short FC_StopAcquisition (void);

Description This function allows another thread of the application to stop the acquisition
before the end of the task.

Parameters none

Return
Value

short • FC_OK if acquisition stopped.

• FC_DRIVER_NOT_FOUND if unable to connect to
the driver

• See Status Code chapter or FC_error.h for a full list
of errors

10 Biometrics FingerChipTM

AN 31-06/03

Exchange data between application and DLL

Prototype Short FC_GetsoftwareConfiguration (t_FC_SoftWareConfiguration *
pDestSoftConf)

Description This function fills the application structure pointed by pDestsoftConf with the
current setting values.

Parameters pDestSoftConf Pointer to a software configuration structure to be filled.
If the structure exists, the data are erased with the new one.

Return
Value

Short • FC_OK
• FC_NOT_INITIALIZED (pointer is NULL)
• FC_DLL_NOT_INITIALIZED (Dll not started

properly)

• See Status Code chapter or FC_error.h for a full list of
errors

Biometrics FingerChipTM

 11
AN 31-06/03

Prototype Short FC_SetSoftwareConfiguration (t_FC_SoftwareConfiguration *
pSrcSoftConf)

Description The user gives a software configuration structure that will replace the current
one.

Parameters pSrcSoftConf Pointer to a software configuration structure to use.

Return
Value

Short • FC_OK
• FC_NOT_INITIALIZED (pointer is NULL)
• FC_DLL_NOT_INITIALIZED (Dll not started

properly)
• See Status Code chapter or FC_error.h for a full list of

errors

Prototype Short FC_GetDeviceInfo (t_FC_DeviceInfo * pDestDeviceInfo)

Description This function fill the application structure pointed by pDestDeviceInfo with the
current values read in the windows registry.

Parameters pDestDeviceInfo Pointer to device info structure to be filled.
If the structure exist, the data are erased with the new one.

Return
Value

Short • FC_OK
• FC_NOT_INITIALIZED (pointer is NULL)
• FC_DLL_NOT_INITIALIZED (Dll not started

properly)

• See Status Code chapter or FC_error.h for a full list of
errors

Prototype Short FC_SetDeviceInfo (t_FC_DeviceInfo * pSrcDeviceInfo)

Description The user gives a device info structure that will replace the current one.

Parameters pSrcDeviceInfo Pointer to device info structure to use.

Return
Value

Short • FC_OK
• FC_NOT_INITIALIZED (pointer is NULL)
• FC_DLL_NOT_INITIALIZED (Dll not started

properly)

• See Status Code chapter or FC_error.h for a full list of
errors

12 Biometrics FingerChipTM

AN 31-06/03

Thermal management
The temperature is a very important factor for the FingerChip as the device sense temperature differential
between the finger and the sensor. If the difference is zero, then the contrast of the images becomes low. To
avoid this, an on-chip temperature control element is implemented.
Several modes of operation are available, and it is possible to adjust the minimum temperature and
maximum temperature of the range to avoid. Although one-degree difference enables to get nice images, as
we don’t know in advance the finger temperature, this range may be quite large to make sure.

Temperature

MinTemperature MaxTemperature

Forbidden range

When the software starts, the application must call the FC_OpenDevice function from the Dll. This function
launches a separated thread in the Dll that will be responsible of the temperature management.
To set the temperature management method:

Prototype short FC_SetTemperatureManagement (enum eThermalManag
ThermalManag)

Description This function configures the thermal management.

Parameters ThermalManag • THERMStart: bypass the control and always warm
• THERMStop: stop the control
• THERMSoft: automatically performed by the Dll.

(default)
• THERMHard: reserved, not yet implemented.

Return
Value

short • FC_OK if done. See Status Code chapter or FC_error.h
for a full list of errors.

To get the current chip temperature:

Prototype short FC_GetCurrentTemperature(long * temperature)

Description This function returns the current temperature of the FingerChip in Celsius.

Parameters short *
temperature

temperature

Return
Value

short • FC_OF if properly read
• FC_TEMPERATURE_NOT_UPTODATE if device is

in use
• See Status Code chapter or FC_error.h for a full list of

errors

Note that the temperature parameters are controlled in t_FC_SoftWareConfiguration structure:
temperature unit, min and max.

Biometrics FingerChipTM

 13
AN 31-06/03

If you want to implement a different strategy such as “increase of 3 degrees the temperature of the chip” to
save power consumption, you will have to perform the following action:

• Stop the control if needed (THERMStop)
• Read the current temperature
• Adjust the min temperature to the current temperature – 3 degrees (to make sure), and the max

temperature to the current temperature to + 3 degrees (and select Celsius or Fahrenheit!)
• Select the software control (THERMStart)
• Once the fingerprint readout is finished, stop the control (THERMStop)

As the temperature management can be achieved by a thread (if thermal policy set to software), the
minimum and maximum limit for this kind of regulation can be modified in the software configuration (by
FC_Parameters application for instance) and immediately take into account by the thermal management.
This is also valid for a change in the thermal management.

Led management

Prototype short FC_SetLedMode (enum eLedMode ledMode)

Description This function configures the Led management.

Parameters ledMode • LEDHard: Led is controlled by hardware
• LEDAuto: Dll controls the Led depending on

acquisition
• LEDOff: Switch off the Led
• LEDOn: Switch on the Led

Return
Value

short • FC_OK if done. See Status Code chapter or FC_error.h
for a full list of errors.

14 Biometrics FingerChipTM

AN 31-06/03

Finger detection

The function FC_IsFinger is used to detect the finger presence on the FingerChip. It also gives the measure
of the finger displacement.

Prototype short FC_IsFinger (signed short *pXMove, signed short *pYMove,
 unsigned long * pStandardDeviation , unsigned long
timeOut,
 unsigned long pollingValue, t_FC_SliceInfo
*pSliceNfo);

Description Detect if a finger is moving on the FingerChip. Some slices are grabbed to
compute the mean displacement.

Parameters signed short *pXMove

signed short *pYMove

unsigned long timeOut

unsigned long *
pStandardDeviation

unsigned long pollingValue

t_FC_SliceInfo *pSliceNfo

Point to the x displacement parameter.

Point to the y displacement parameter.

TimeOut to wait before returning an error.

Point to a standard deviation parameter.

Interval time of polling in millisecond.

Point to a slice info buffer.

Return
Value

short • FC_OK if finger detected.
• FC_NO_FINGER if finger was not

detected.
• See Status Code chapter or FC_error.h for

a full list of errors

The finger detection is based on acquisition of several slices, at the frequency given by polling value. The
pooling value is more important to get back the displacement. If the polling value is too high, the driver can
miss the finger detection. The recommended value is around 20.
This function isn’t available for BIOKI device.

Biometrics FingerChipTM

 15
AN 31-06/03

Slice acquisition
This function grabs a given number of slices without any reconstruction.
For BIOKI device, the number of slices can’t be defined by the user (The drivers returns the amount of slices
corresponding to a finger sweep)

Prototype short FC_GetSlice (unsigned char *pSlice, unsigned long sliceSize ,
 t_FC_Sliceinfo * pSliceInfo)

Description FC_GetSlice grabs some slices and write them in the memory.

Parameters unsigned char *pSlice

unsigned long sliceSize

t_FC_Imageinfo *
pImageInfo

Pointer to the slice memory

Size of the slice memory in bytes. If the size is
not a multiple of the slice size, an entire number
of slices will be returned.

Return structure. If NULL, this parameter is
ignored.

Return
Value

short • FC_OK if done.
• See Status Code chapter or FC_error.h for a

full list of errors

Debug file
The trace information allows the user to understand the function calls in the Dll and the corresponding
parameters. By default, the debug file generation is disabled for security reason.

Prototype short FC_DebugFileGeneration (unsigned short level, char * pDebugFile)

Description This function changes the debug file parameters. Three levels of generation
are provided :

��Disabled
��Generate debug file if an error is found
��Always generate debug File

When the Dll is loaded, the debug file generation is disabled. If the file exists,
the trace is appended.

Parameters unsigned short
level

char * pDebugFile

• FC_LOG_DISABLED
• FC_LOG_ENABLE_ERROR: Generate debug

file just if an error appears.
• FC_LOG_ENABLE_ALWAYS
• FC_LOG_ERASE: combined with (logical or), it

allow to empty the debug file.

Path and name of the debug file (c:\temp\sweepee.log).

Return
Value

short • FC_OK if done. See Status Code chapter or
FC_error.h for a full list of errors

16 Biometrics FingerChipTM

AN 31-06/03

Image reconstruction
This function is able to reconstruct an image from already acquired slices.

Prototype short FC_ReconstructImage(unsigned char *pImage, unsigned short xImage,
unsigned short yImage, unsigned char *pSlice, unsigned long sliceSize,
t_FC_ImageInfo *pImageInfo)

Description This function reconstructs an image from provided slices.

The parameter pImage must point to a xImage * yImage sized buffer. The
parameter pSlice must point on a sliceSize buffer.

Parameters unsigned char *pImage
unsigned short Ximage
unsigned short Yimage
unsigned char *pSlice
unsigned long sliceSize
t_FC_ImageInfo
*pImageInfo

Point to the image buffer
x size of the image
y size of the image
point to the slice buffer
size of the slice buffer
point to a t_FC_ImageInfo structure

Return
Value

short • FC_OK if done. See Status Code chapter or
FC_error.h for a full list of errors

Biometrics FingerChipTM

 17
AN 31-06/03

Structures description
Device characteristics

The t_FC_DeviceInfo structure contains all the hardware device information and some data concerning the
Dll. The user can access those values by calling the FC_GetDeviceInfo function at any time. This structure
is passed to the Dll using the functions FC_SetDeviceInfo() and FC_GetDeviceInfo().

 t_FC_DeviceInfo

Parameter Name Type Details User Update

bandwidthMode eBandwidthMode Wanted bandwidth
(Automatic selection, Full
or Half)

Yes

bytesPerSecond double maximum frequency No. Update by Dll

dllVersion char [20] version of Dll No. Compilation information

communicationPort eCommPort Port to communicate to.
(USBGenesys by default).
 USB, USBGenesys.

No. Uses for debug purpose only.

copyright char [300] No. Compilation information

deviceName char [20] device name No. Deduct from ‘partNumber’

hardVersionBoard double version of Hardware board No. Deduct from ‘partNumber’

maxSlicesPerSecond double maximum reading speed in
frame per second

No. Update by Dll

partNumber char [20] Device part number Yes. Change available if the device
is not in use (not opened).

pixelDefaultValue unsigned long Pixel default value [0..255]
if other, automatic
evaluation

Yes

pixelPitch unsigned short pixel pitch in micron
(50 for FCD4B14)

No. Deduct from ‘partNumber’

realBandwidth eRealBandwidth Obtained bandwidth (Full,
Half or Nothing)

No. Update by Dll

reserved char[120] Reserved parameters Yes, but without effect

resolution unsigned short resolution of the device No. Deduct from ‘partNumber’

xSliceSize unsigned short x size in pixel of one slice
(280 for FCD4B14)

No. Deduct from ‘partNumber’

ySliceSize unsigned short y size in pixel of one slice
(8 for FCD4B14))

No. Deduct from ‘partNumber’

18 Biometrics FingerChipTM

AN 31-06/03

Slice information
The structure t_FC_SliceInfo contains all the data related to the slices, updated after each acquisition.

t_FC_SliceInfo

Parameter name Type Details Update User

thresholdUsed unsigned long Threshold used by the Dll to detect a
finger

No. Update by Dll

numberOfBytesRead unsigned long size of the stored slice memory,
in bytes

No. Update by Dll

numberOfSlicesStored unsigned long number of stored slices No. Update by Dll

numberOfSlicesRead unsigned long number of read slices
(including waiting time)

No. Update by Dll

timeToReadStoredSlices double time to read the stored slices
 in seconds

No. Update by Dll

timeToReadAllSlices double time to read all the slices
 in seconds

No. Update by Dll

slicesPerSecond unsigned long acquisition speed of the current device
in slices per second

No. Update by Dll

currentTemperature signed long current temperature No. Update by Dll

reserved char[128] reserved parameters -

Image information

The structure t_FC_ImageInfo contains all the information concerning the reconstructed image.

t_FC_ImageInfo

Parameter name Type Details Update User

xReturnSize unsigned long size in x direction of the returned
image in pixel

No. Update by Dll

yReturnSize unsigned long size in y direction of the returned
image in pixel

No. Update by Dll

yMeanDisplacement double mean value of displacement in y
direction in pixel per slice

No. Update by Dll

meanFingerSpeed double mean value of finger speed
in slices per second.

No. Update by Dll

xReconstructedSize unsigned long x size of reconstructed image
(not the returned image)

No. Update by Dll

yReconstructedSize unsigned long y size of reconstructed image
(not the returned image)

No. Update by Dll

backgroundUsed unsigned long Background pixel value used during
reconstruction

No. Update by Dll

lastSliceInfo t_FC_SliceInfo slice info structures No. Update by Dll

Biometrics FingerChipTM

 19
AN 31-06/03

Software Configuration
The structure t_FC_SoftWareConfiguration contains all the parameters concerning the software. All the
parameters have a default value. This structure is passed to the Dll using the functions
FC_SetSoftwareConfiguration() and FC_GetsoftwareConfiguration().

t_FC_SoftWareConfiguration

Parameter name Type Details User Update

Note: can be changed even if the
semaphore is used (device in
use).

rotation char Image Rotation, change the
sweeping way

Yes.

mirror char Horizontal image mirror
(horizontal left <-> right)

Yes.

flip char Vertical image mirror
(vertical up <-> down)

Yes.

minHeightImage unsigned long If y image < minHeightImage
an error code is generated
(default: 100 pixels)

Yes.

autoThreshold char 1: automatic threshold
0: use beginThreshold value
(default: automatic)

Yes. Deduct from ‘partNumber’.

beginThreshold unsigned long Threshold to start acquisition
(default: 20)

Yes. Deduct from ‘partNumber’.

waitingTimeOut unsigned long Timeout when waiting for a
finger (default: 15 seconds)

Yes.

noiseFilter char Remove fixed noise or not
(default: true = remove)

Yes.

enhanceImage char Enhance reconstructed image
(default: false)

Yes.

autoThermalManag enum
eThermalManag

Thermal management :
�� THERMSoft by software
�� THERMStart, THERMStop
�� THERMHard by hardware

Yes.

temperatureUnit char false : °C
true : °F

Yes.

temperatureLow signed long (default 77°F) Yes.

temperatureHigh Signed long (default 113°F) Yes.

minSliceNumber unsigned long Minimum number of slices for an
image acquisition

Yes.

thermalWatchdog Unsigned char Not available No

ledMode enum eLedMode Led management :
�� Only LEDHard available

No

Reserved Char[123] reserved parameters -

20 Biometrics FingerChipTM

AN 31-06/03

Navigation information

The structure t_FC_NavigationInfo contains all the information concerning navigation.

t_FC_NavigationeInfo

Parameter name Type Details Update User

reserved unsigned short reserved No. Update by Dll

reserved unsigned short reserved No. Update by Dll

lXDisplacement long Horizontal displacement from the last
function call

No. Update by Dll

lYDisplacement long Vertical displacement from the last
function call

No. Update by Dll

reserved unsigned long reserved No. Update by Dll

Biometrics FingerChipTM

 21
AN 31-06/03

Status Code
All the functions of the Dll return a status code. All the possible status codes are defined in the declaration
file FC_error.h, so that application developers can process these codes.
The FC_FormatMessage() returns a human readable message (in English) based on the status code: it is
recommended to use this function in order to return a human comprehensive message to the user.
To ease the error processing and limit the need to compile again if new error codes occur, the following
convention is used:

Status code Alias

0 FC_OK No error, no warning.

> 0 Positive value Warning

If it occurs during opening, it is recommended to send a
message to the user to correct a potential problem.

If it occurs during fingerprint acquisition, it is not
necessary to stop it: just send a message to the user.
Anyhow, there is a resulting fingerprint image to process,
even if not very good (for instance, if the warning is
“sweep too fast”)

< 0

at initialization

Negative value Error

If it occurs during opening, this is probably a hard error
(device not connected for instance). Display the error
message so that the user can take the appropriate action (it
can help for debug purpose).

-xxx < … < 0

during fingerprint
acquisition

Low negative value Error

There is no image returned, but the device is still working.
A problem occurs during or after the acquisition, and it
requires trying again.

It is recommended to display a message without stopping
the acquisition, so that the user can try again.

For instance, the image size was too little in the vertical
direction, so the Dll has generated an error.

-xxx FC_OPERATION_ABORTED The user has requested to break the acquisition. No image
returned, but this is not really an error.

< -xxx

during fingerprint
acquisition

Very low negative value Error

This is a hard error (for instance, the device has been
disconnected during acquisition, which is never
recommended).

Display the message error and stop the program so that
the user can correct the problem. You will probably need
to close the device and re-open to make sure everything is
OK.

22 Biometrics FingerChipTM

AN 31-06/03

Recommended Application Architecture
The Dll interface provides only synchronous entry points. This means that one Dll function call wait for the
function job to be finished before get back to the application. Most of the Dll entry points have a short
execution time, but some of them can lock the application for a while. The perfect example is the
FC_GetImage() function that wait for a finger to get back the image. The waiting time is programmable by
application and can be very long. If your application is locked on this acquisition, you will not be able to do
something else and particularly to abort the finger image acquisition.
The only solution is multi-thread. On the principle, the application will create a thread in charge of the image
acquisition. The main application thread can be used to achieve other tasks and for instance, to call the
function FC_StopAcquisition() to cancel the current finger image acquisition. This is exactly the
FC_Training application principle. The acquisition thread loops on the FC_GetImage() and then display the
acquired image. When the user quit the application, the main thread executes FC_StopAcquisition()
function, which unlock the current FC_GetImage() call. The acquisition thread is informed that the
FC_GetImage was interrupted by its returned error code. The acquisition thread can suicide or being killed
by the main thread.
This Dll characteristic prevent the use of the Visual Basic, which is mono-thread (at least lets consider it is,
due to the complexity to address multi-thread in Visual Basic). A proper COM component must be
developed to correctly use the Dll from Visual Basic.

Biometrics FingerChipTM

 23
AN 31-06/03

INFORMATION FOR DRIVER DEVELOPERS

This chapter describes the useful information for driver developers.
The driver is responsible of three different parts:

• Control the FingerChip
• Finger detection
• Data acquisition from the FingerChip

Dll interactions
The Dll is responsible of the data decoding and has no real time requirement.
The Dll is completely hardware independent. It means that the same Dll can be used with different devices
(different drivers). For each new device developed, the Dll is still being the same one. If functionality is
modified in the Dll, it affects all the products (and it is not necessary to modify each device).
The Dll is divided into three main parts:

• The parameters
• The communication with the driver
• The reconstruction

Many applications can access to the parameters at the same time while the access to the device is reserved
for one application at the same time. When the application calls the FC_OpenDevice() function, the Dll
verifies if no one has taken the semaphore before. If the access is possible, the Dll gives the semaphore to the
Dll. The semaphore is released when the application calls the FC_CloseDevice() function. The Dll API
respects the ANSI C, but the source code of the Dll still contains some non-ANSI C part.

Families of drivers
FingerChip readers are driven with two kinds of drivers:

• Drivers providing Twain data: Twain is a standard way of driving imaging devices. You can get all
the documentation at www.twain.org.

• Custom drivers: the specific way they offer to drive the FingerChip readers is detailed below.

24 Biometrics FingerChipTM

AN 31-06/03

Overview: read an image
The scheme below defines the communication between the different parts of the software during an image
acquisition.

Software Application

FingerChip Dll

FingerChip
Driver

Slices Groups
Acquisition

Image
Reconstruction

Loop until end
of capture

Mvt Detection

First Acquisition

Next
Acquisitions

loop until no
mvt

loop until
mvt

mvt

return group of
read slices

read slices
read N
slices

read M
slices

end of
capture

FC_GetImage()

DeviceIoControl()

End of
reconstruction

Start
acquisistion /
reconstruction

Thread

USB

Biometrics FingerChipTM

 25
AN 31-06/03

FingerChip driver definition
For each kind of device, the driver is different but the interface with the Dll is identical.
All acquisitions are asynchronous with the Dll. It means that the Dll orders the driver to start the acquisition
and the Dll is informed of the state of the driver with events.
The communication between Dll and drivers can be decomposed in three different parts: Detection, First
Acquisition and Next Acquisition.

Detection:
When the driver receives the FINGERCHIP_START_READING_IMAGE control codes, the main purpose
of the driver is to find the finger presence and then store the next slices in the buffer.
To detect the finger presence, the driver pools the FingerChip with a defined frequency (5ms for instance)
and acquires a set of slices (2 for instance). Then, the driver unpacks the data in order to compute if a finger
is present. If true, the driver starts the acquisition in continuous mode (‘First acquisition phase’). If false, the
pooling still executed.
The data are stored only in the acquisition phase. When the pooling is performed, the data are discarded.

First acquisition:
When the Detection phase detects a finger, the First acquisition phase starts. The driver acquires some slices
(300 for instance), then unpacks the data and computes the displacement.
Every 50 (for instance) of slices, the driver generates an event using a semaphore to inform the Dll that data
are available for processing.
If a finger is still detected in the trailing slices, the driver will start the Next acquisition phase to keep reading
the device. If the finger is not present yet, the driver generates the end event using the IoCompleteRequest
API and stops the acquisition.

Next acquisition:
The driver acquires a set of slices (150 for example), unpacks the data and detect the finger’s presence. Like
the First acquisition phase, every 50 slices, the driver generates an event using the semaphore to inform the
Dll that data are available for processing.
If no finger is detected in the trailing slices, the driver generates the end event using the IoCompleteRequest
API and stops the acquisition. If the finger is still present, it loops on Next Acquisition.

Stop acquisition:
During each phase, the driver can be ordered to stop the acquisition if a FINGERCHIP_RESET_DEVICE
control code is received from the Dll.
The driver must support the cancel IRP operation.

26 Biometrics FingerChipTM

AN 31-06/03

Control code Definition
The image reconstruction is performed in the Dll. The data stored in a private buffer of the driver just
contains the acquisition but the Dll has to perform the reconstruction.
The Dll is able to communicate with each driver with a set of control codes. For this reason, each driver that
may be used with the Dll must implement all those functions.
To send orders to the driver, the Dll will use the “DeviceIoControl” functions. The different parameters to
use for each control codes are described below.
When an image is requested, the Dll can provide a pointer on a semaphore in order to be informed of
available slices in the buffer before the end of the acquisition. If the Dll does not need to use this
mechanism, the parameter must be NULL.

Exchanged buffers between driver and Dll
For each control codes which deal with buffer of slices, an incoming parameter takes place to define the
format of the requested slices.
Today, just the COMPRESS FORMAT is allowed but this parameter may be useful for the future if the
driver performs: uncompress, rotate, compute, and reconstruct. Besides, if the format of the slices sent by the
hardware changes in the future, a new format can take place.
In the COMPRESS FORMAT, the slice format is:

Compressed
slice 1

Reserved
1

…

1124 bytes 1124 bytes 6 bytes

Compressed
slice 2

Compressed
slice n

Reserved
2

… Reserved
n

6 bytes 6 bytes1124 bytes

The Compressed slice contains the 2 bytes of synchronization, the 2 bytes of temperature and the 1120 bytes
of data. Each compressed slices has the 6 corresponding reserved bytes at the end of the buffer. Today in the
first byte of these reserved parameters, one of the drivers writes the start of chunk and the start of chunk64.

Biometrics FingerChipTM

 27
AN 31-06/03

Read an image

Control Code FINGERCHIP_START_READING_IMAGE

Description Order the driver to acquire an image. The data are stored in the buffer when
a finger is detected. The acquisition stops when displacement is null on the
FingerChip.

unsigned long timeOut TimeOut in ms to stop finger detection

HANDLE HSemaphore Handle on the semaphore to signal when
number of slices are available in the buffer. If
NULL, this parameter is ignored.

unsigned long pollingTime Time in ms between a loop in the detection
phase

unsigned long threshold Threshold to use in the detection phase and to
detect the end of the finger

unsigned long orientation The lower bit is a copy of the rotation
parameter of the Dll. The second lower bit is a
copy of the mirror parameter of the Dll. The
other bits are reserved.

In
parameters

unsigned long
BufferFormat

This parameter informs the driver of the
requested slice buffer format. Must be
COMPRESS FORMAT

unsigned long
acquisitionTime

Elapsed time between the end and the
beginning of the acquisition (not the request)
in µs.

Out
parameters

unsigned char pSlices Buffer containing the slices and the reserved
bytes.

28 Biometrics FingerChipTM

AN 31-06/03

Read some slices

Control Code FINGERCHIP_START_READING_SLICES

Description Order the driver to acquire a set of slices. The data are stored in the buffer.

unsigned long timeOut TimeOut in ms to stop finger detection.
Parameter ignored if WaitFinger is FALSE

bool WaitFinger If TRUE, the driver waits to find a finger before
storing data and stops the acquisition when no
more finger.
If FALSE, data are stored immediately in the
buffer and the driver stops the acquisition when
the buffer is full.

unsigned long
pollingTime

If the WaitFinger parameter is false, this
parameter is ignored. Time in ms between a
loop in the detection phase.

unsigned long threshold Threshold to detect the finger presence.

unsigned long orientation The lower bit is a copy of the rotation parameter
of the Dll. The second lower bit is a copy of the
mirror parameter of the Dll. The other bits are
reserved.

In
parameters

unsigned long
BufferFormat

This parameter informs the driver of the
requested slice buffer format. Must be
COMPRESS FORMAT

unsigned long
acquisitionTime

Elapsed time between the end and the beginning
of the acquisition (not the request) in µs.

Out
parameters

unsigned char Slices Buffer containing the slices and the reserved
bytes.

Biometrics FingerChipTM

 29
AN 31-06/03

Write configuration

Control Code FINGERCHIP_WRITE_DATA

Description Transmit data to the FingerChip (parameter)

In
parameters

unsigned long parameter Parameter value.

Out
parameters

none

Reset the device

Control Code FINGERCHIP_RESET_DEVICE

Description Reset the FingerChip.

In parameters none

Out parameters none

Cancel the operation

Control Code FINGERCHIP_CANCEL_IO

Description All the control codes currently running are cancelled

In parameters none

Out parameters none

30 Biometrics FingerChipTM

AN 31-06/03

Returned Status
The Dll must be informed of the driver status. When the driver accomplish a task, it sets the Error value and
call the IoCompleteRequest API. When the Dll received the event, it is possible to call the GetLastError API
to retrieve the status.

The possible statuses are:

• NO_ERROR
• NOT_ENOUGH_MEMORY
• INVALID_ACCESS if the device is not connected
• NOT_READY if the finger is not detected when timeOut occurs
• INSUFFICIENT_BUFFER if the buffer is full before the end of the request

Biometrics FingerChipTM

 31
AN 31-06/03

SOFTWARE SOLUTIONS

This chapter deals with some solutions proposed by ATMEL relative to specific problems.

Low contrasted image
This problem is characteristic to the FingerChip. Its technology is based on the temperature difference
detection, which became poor when the finger and the FingerChip temperature are the same.
If low contrast images or slices are obtained, check the FingerChip heating state with the Dll API function
FC_GetSoftwareConfiguration(). The returned information contains the heating state: on, off or regulated
(soft). On PC the recommended mode is: regulated (soft). You can switch it on by using the function
FC_SetTemperatureManagement(). Then restart your acquisition.

Logon Development – low contrasted image
A logon application based on the FingerChip TM technology may encounter some problem relative to quality
at the very first image acquisition. Actually, the heating regulation, which ensures the acquired image
quality, is achieved in the Dll and can be active if an application had previously opened the device using
FC_OpenDevice(). This means that the first acquisition may be low contrasted, depending of the finger and
FingerChip temperature. If the FingerChip heating regulation is enable, wait a few seconds to let increase the
FingerChip temperature. If the FingerChip heating is disable, refer to the chapter 0Low contrasted image.

Logon Development – parameters management
The FingerChip parameters are defined using FC_Parameters application. They are managed by the Dll
which stores them in the Windows registry.
All these keys are located in HKEY_CURRENT_USER\Software\Atmel-Grenoble\FingerChip. However
this registry location isn’t available at logon step. So when HKEY_CURRENT_USER isn’t available, the
Dll tries to use HKEY_LOCAL_MACHINE\Software\Atmel-Grenoble\FingerChip (so take care that the
parameters can be saved in different locations). If both of them are not accessible the Dll can’t be loaded.

32 Biometrics FingerChipTM

AN 31-06/03

API CHANGES

In release V14.00
New functions have been added for AT77C104A reader:

- FC_StartNav
- FC_GetNav
- FC_StopNav

In release V13.02
The Dll API has not changed but for BIOKI01 device:

- FC_GetSlice use is different (so ‘Oscilloscope’ function of FC_Demo isn’t available)
- FC_IsFinger isn’t available (so FC_Mouse and ‘Test Finger Presence And Displacement’ function of

FC_Demo aren’t available)

In release V13.01
The Dll API has not changed.

In release V13.00
The Dll API has changed to support a new USB interface. In spite of these modifications, the binary
compatibility of the API is preserved.

Some additional error numbers were added and the structures t_FC_DeviceInfo and
t_FC_SoftwareConfiguration were modified. Developers can refer to Software Development Kit for the API
details.

In release V12.00
The DLL API has changed to ensure an ANSI C compatibility. Actually, the boolean type used in the Dll
API was specific, at least, to Microsoft Visual C++ compiler. These booleans, found in the code as ‘bool’,
have been replaced by the char type. The Dll API binary compatibility is ensured (no need to recompile the
application), depending on the compiler used.
• For Visual C++ 5.0 or later compiler users, the ‘bool’ is implemented as a built-in type with a size of 1

byte. In a first time, the user applications do not need to be recompiled, as the Dll API binary signature is
the same. But the first application recompilation will raise warnings such as “forcing char to bool :
performance warning”. At this stage, we recommend to change your application using the new Dll API
definition.

• For Visual C++ 4.2 compiler users, the ‘bool” is mapped on an integer, using a typedef. As the ‘int’ is 4
bytes large, your application is incompatible with the new Dll (this can cause memory corruption
problems) and we highly recommend to change your application using the new Dll API definition.

• For other compiler users, make sure your applications comply with the new Dll API definition.
The modifications concern only the t_FC_SoftwareConfiguration structure.

Biometrics FingerChipTM

 33
AN 31-06/03

BUG REPORT

Send your bug reports to

���������	
��
�����
�

with all relevant files that may help the debug.

HISTORY

The followings show the changes compared to the previous release:

Version Description
OCT-2003 Modified for v14.02 delivery
JUN-2003 Modified for v14.00 delivery (including AT77C104A-EK1)
APR-2003 Modified for v13.02 delivery (including BIOKI01)
JUL-2002 Modified for v13.01 delivery (including FCSWEEP06)
MAR-2002 Modified for v13.00 delivery
FEB_2002 Delivered in a Winzip file
OCT-2001 Modified for v12.00 delivery
SEP-2001 Created from the internal specification 0.7.

Fully replaces the specification 0.7.

Printed on recycled paper.

AN 31-062003

Atmel Headquarters

Corporate Headquarters

2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 441-0311
FAX (408) 487-2600

Europe

Atmel SarL
Route des Arsenaux 41
Casa Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia

Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan

Atmel Japan K.K.
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Product Operations

Atmel Colorado Springs

1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759

Atmel Grenoble

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-7658-3000
FAX (33) 4-7658-3480

Atmel Heilbronn

Theresienstrasse 2
POB 3535
D-74025 Heilbronn, Germany
TEL (49) 71 31 67 25 94
FAX (49) 71 31 67 24 23

Atmel Nantes

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 0 2 40 18 18 18
FAX (33) 0 2 40 18 19 60

Atmel Rousset

Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-4253-6000
FAX (33) 4-4253-6001

Atmel Smart Card ICs

Scottish Enterprise Technology Park
East Kilbride, Scotland G75 0QR
TEL (44) 1355-357-000
FAX (44) 1355-242-743

Fax-on-
Demand
North America:
1-(800) 292-8635
International:
1-(408) 441-0732

e-mail
literature@atmel.com
Web Site
http://www.atmel.com
BBS
1-(408) 436-4309

© Atmel Corporation 2002.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

FingerChip is the registered trademark of Atmel.

Other terms and product names may be the trademark of others.

