

STPMIC1Power management IC

STPMIC1 overview

Highly integrated PMIC for microprocessor units

KEY APPLICATIONS

- Industrial [e.g. Controls, POS, M2M interfaces, predictive maintenance]
- Home Automation
- Networking
- Medical Monitoring

High level of integration – 14 power rails

- 4 Buck DC/DC converters
- 1 Boost DC/DC converter
- 6 LDOs
- 1 voltage reference
- 2 power switches
- Provides power to the microprocessor unit as well as to external peripherals such as USB, DDR, Flash memories and other external components

Application flexibility

- Large input voltage range: from 2.8 to 5.5 V.
- Compatible with 5 V wall adaptor, USB as well as Li-Ion/Li-Po batteries
- Full programmability via I2C

Package

QFN 44L [5 x 6 x 0.8 mm]

STPMIC1 block diagram

Control STATE MACHINE & RESET	BUCK 1 [VDD – CORE] 0.725 to 1.5 V [1.5 A]		LDO1 [Gen Purp] 1.7 to 3.3 V/ 350 mA
Dig IOs & Inter I2C and registers	BUCK 2 [VDD – DDR] 1.0 to 1.5 V [1 A]		LDO2 [SD / Gen Purp] 1.7 to 3.3 V/ 350 mA
Start-up NVM prototyping and programming	BUCK 3 [VDD] 1.0 to 3.4 V [0.5 A] BUCK 4 [Gen Purp] 0.6 to 3.9 V [2 A]		LDO3 [Gen Purp / DDR-VTT] 1.7 to 3.3 V/100 mA – normal mode ±120 mA- Sink/Source 50 mA – bypass mode
Prot ,auto turn-on,I2C add, lock			LDO4 [USB-PHY] 3.3 V [50 mA]
Reference & Monitoring DDR V _{REF}	BOOST [VBUS] 5.2 V [1.1 A]		LDO5 [Gen Purp/Flash mem] 1.7 to 3.9 V/ 350 mA
POR, OCP, Short CP, TP, Watchdog	VBUSOTG_SW [0.5 A]	PWR_SW [1.0 A]	LDO6 [Gen Purp/VDDA] 0.9 to 3.3 V/ 150 mA

STPMIC1 versions

Pre-programmed [typ when V_{IN}=5 V]

Pre-programmed [typ when V_{IN}=battery]

Not pre-programmed [custom application]

Pre-programmed [typ when V_{IN}=5 V]

Pre-programmed [typ when V_{IN}=battery]

Rank= 0: rail not automatically turned ON

Rank= 1: rail automatically turned ON after 7 ms

Rank= 2: rail automatically turned ON after further 3 ms

Rank= 3: rail automatically turned ON after further 3 ms

STPMIC1 | buck converters Main electrical characteristics

	BUCK 1	BUCK 2	BUCK 3	BUCK 4	
Output Voltage	0.725 to 1.5 V	1 to 1.5 V	1 to 3.4 V	0.6 to 3.9 V	
Output Voltage Steps	25 mV	50 mV	100 mV	25 mV [V _{OUT} from 0.6 to 1.3V] 50 mV [V _{OUT} from 1.3 to 1.5V] 100 mV [V _{OUT} from 1.5 to 3.9V]	
I _{OUT}	1.5 A	1 A	0.5 A	2 A	
100% DC	Υ	Υ	Υ	Υ	
Control Method	Adaptive Constant ON-Time [in HP mode] → 2 MHz in steady state, FSW during transient allowing excellent response, high accuracy [2 %]				
	Hysteretic [in LP mode]: low Iq [5 - 20 uA], good transient response but lower accuracy [4 %]				

Boost converter for USB-VBUS Main electrical characteristics

LDOs / VREF Main electrical characteristics

- Input voltage: 2.8 V* to 5.5 V
- Output voltage / rated output current / default output voltage / usage:
 - LDO1: 1.7 to 3.3 V | 350 mA | OFF | General Purpose
 - LDO2: 1.7 to 3.3 V | 350 mA | OFF** or 2.9 V** | General Purpose [e.g. SD-card]
 - LDO3: 1.7 to 3.3 V | 120 mA | OFF | DDR3 VTT or lpDDR2's VDD1 or General Purpose
 - LDO4: 3.3 V | 50 mA | 3.3 V | Dedicated for MPU USB PHY
 - LDO5: 1.7 to 3.9 V | 350 mA | 2.9 V | General Purpose [e.g. Flash memory / SD-CARD]
 - LDO6: 0.9 to 3.3 V | 150 mA | OFF | General Purpose
 - VREF: VOUT2/2 | 5 mA | OFF | Dedicated for DDR reference voltage
- I²C programming step: 100 mV
- Output voltage accuracy: +/- 2 %
- Programmable passive discharge resistor: inactive / active
- OCP fault flag

STM32MP1 general purpose MPU Accelerating IoT and smart industry innovation

- Multicore Microprocessor running RTOS & Linux in parallel
- Suitable for industrial applications with 10-year longevity commitment
- Heterogeneous architecture [2 x Cortex-A7 + Cortex-M4 + GPU Cores]
- STM32Cube full ecosystem reuse on Arm Cortex-M4 core
- Dual Cortex-A7 with free Linux Distribution: OpenSTLinux

STPMIC1 and STM32MP1

The All-In-One power management solution for STM32MP1 microprocessors

- Optimized power consumption
- BOM saving
- Smaller PCB footprint than discrete solution

STPMIC1 and STM32MP1

STPMIC1 IC vs. Discrete solutions Optimized features

	STPMIC1	Discrete solution
Monitor all power rails and provide OCP, OVP, OTP features		×
Power-up / Power-down sequence		×
Voltage accuracy / settling time needed by STM32MP1 series		Need an accurate component selection
Overall solution footprint (*)		×
ВОМ		×

End-markets

Home Automation

Industrial Control

POS Terminals

Networking

Medical Monitoring

STPMIC1 for mass market

A comprehensive set of tool for validating the design on your own

STEVAL-PMIC1K1 | STPMIC1 Evaluation board

STSW-PMIC1GUI | GUI to monitor and configure STPMIC1

Technical Docs | Datasheet, Application Notes, Gerber files, ...

STPMIC1 takeaways

STPMIC1 & STM32MP1	Optimized companion PMIC for ST's STM32MP1 heterogeneous multicore microprocessors family
Best PMIC for MPU pick	Satisfies the complex power demands of highly-integrated application-processor based systems
Controls & protections beyond just delivering power	Provides power-rail monitoring and protection, handles power-up/down sequencing, and meets accuracy and settling-time specifications
Optimized application footprint	Saves board space and BOM cost vs discrete solution

Thank you

Thank you

