## NA2200

## 5V Analog Front End with High Gain PGA

## FEATURES

- Supply Voltage
- Ambient Operating Temperature $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- ADC Resolution 16-Bit (No missing codes)
- Data Rate
- Input mode
- PGA 0.814 k to $6.51 \mathrm{ksps}^{(1)}$

Differential : 2 inputs
Single-ended (2) : 4inputs
Pseudo-differential ${ }^{(3)}$
$1 \mathrm{~V} / \mathrm{V}$ to $512 \mathrm{~V} / \mathrm{V}$

- System Calibration for offset \& gain drift
- Built-in Regulator
- Current Consumption
- Conversion mode

Normal Mode 4mA
Low Power Mode 1.3mA
Single / Continuous

- Excitation Current Source

2 systems ( $0.1 \mathrm{~mA}, 0.25 \mathrm{~mA}, 0.5 \mathrm{~mA}, 1.0 \mathrm{~mA}$ )

- Interface

SPI

- CS (Chip Select)
- Error detection

CRC8, Check Sum

- Package

SSOP-16-BD

## GENERAL DESCRIPTION

NA2200 is a CMOS-based 5V AFE with up to 512 times internal PGA (Programmable Gain Amplifier). Internal 16-bit $\Delta \Sigma$ type A / D converter can perform conversion rates from 0.814 ksps to 6.51 ksps . The customer can choose internal A/D converter's input, among differential input, single-ended input and pseudo-differential input.

NA2200 can set the optimum gain to the pressure sensor, flow sensor by a wide range of gain setting. Various parameters (such as gain, conversion rate, correction) settings can be easily set in the SPI communication from an external MCU.

## APPLICATIONS

- Pressure sensors
- Flowmeters
- Current Measurement
- Thermostat
- PLC


SSOP-16-BD
$5.0 \times 6.4 \times 1.25(\mathrm{~mm})$
(1) Case of single conversion. (Continuous conversion is three times the data rate.)
(2) PGA2 can be used only. (PGA1 cannot be used.) Four channels of VIN1P, VIN1N, VIN2P \& VIN2N can be used.
(3) Bias voltage of VIN1P, VIN1N, VIN2P \& VIN2N is common to VDD / 2. Input Signal can be used VIN1P and VIN2P only.

## - PRODUCT NAME INFORMATION

NA2200 BD A E2 S

Description of configuration

| Suffix | Item | Description |
| :---: | :---: | :--- |
| BD | Package code | Indicates the package. Refer to the order information. |
| A | Version | Product Version. Default is $A$. |
| E2 | Packing | Refer to the packing specifications. |
| S | Grade | Indicates the quality grade. |

Grade

| Grade | Usage | Operating Temperature Range | Test Temperature |
| :---: | :---: | :---: | :---: |
| S | General-purpose <br> and Consumer application | $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ |

## - ORDER INFORMATION

| Product Name | Package | RoHS | Halogen- <br> Free | Terminal <br> Finish | Weight <br> $(\mathrm{mg})$ | Quantity per Reel <br> $(\mathrm{pcs})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NA2200BDAE2S | SSOP-16-BD | Yes | Yes | Sn-2Bi | 68.00 | 2,000 |

## - PIN DESCRIPTION



SSOP-16-BD Pin Configuration

| Pin No. | Pin Name | I/O | Description |
| :---: | :---: | :---: | :--- |
| 1 | VIN1P | Analog Input | +INPUT 1 for differential mode / INPUT 1 for single-ended mode |
| 2 | VIN1N | Analog Input | -INPUT 1 for differential mode / INPUT 2 for single-ended mode |
| 3 | VIN2P | Analog Input | +INPUT 2 for differential mode / INPUT 3 for single-ended mode |
| 4 | VIN2N | Analog Input | -INPUT 2 for differential mode / INPUT 4 for single-ended mode |
| 5 | VREFN | Analog Input | -Reference Voltage Input |
| 6 | VREFP | Analog Input | +Reference Voltage Input |
| 7 | STBY | Digital Input | Standby Mode |
| 8 | VDD | Power Supply | Supply Voltage |
| 9 | GND | GND | GND |
| 10 | GND | GND | GND |
| 11 | REG | Analog Output | Built-in Regulator for Digital Power Supply (Place a decoupling capacitor <br> close to 11pin) |
| 12 | CSB | Digital Input | SPI Chip Select |
| 13 | SDO / RDYB | Digital Output | SPI serial data output / RDYB output |
| 14 | SDI | Digital Input | SPI serial data input |
| 15 | SCK | Digital Input | SPI serial clock input |
| 16 | NC | GND | Non Connection |

Please refer to "TYPICAL APPLICATION CIRCUIT" or "APPLICATION NOTES" for details.

## - ABSOLUTE MAXIMUM RATINGS

|  | Symbol | Ratings | Unit |
| :--- | :---: | :---: | :---: |
| Power Supply Voltage | $\mathrm{VDD}_{\text {abso }}$ | $7.0^{(4)}$ | V |
| Power Dissipation | $\mathrm{PD}_{\mathrm{D}}$ | $900^{(5)} / 1,300{ }^{(6)}$ | mW |
| Analog Input Voltage | $\mathrm{V}_{\mathrm{IN}}$ | -0.3 to $(\mathrm{VDD}+0.3)^{(7)}$ | V |
| Operating Temperature Range | $\mathrm{T}_{\text {opr }}$ | -40 to 125 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $\mathrm{T}_{\text {stg }}$ | -40 to 150 | ${ }^{\circ} \mathrm{C}$ |

(4) The difference between the absolute maximum power supply voltage and the operating power supply voltage is small. Please be careful so that the operating power supply voltage does not exceed the absolute maximum supply voltage by spike voltage.
(5) Mounted on glass epoxy board. ( $114.3 \times 76.2 \times 1.57 \mathrm{~mm}$ : based on EIA/JEDEC standard, 2Layers FR-4.)
(6) Mounted on glass epoxy board. ( $114.3 \times 76.2 \times 1.6 \mathrm{~mm}$ : based on EIA/JEDEC standard, 4Layers FR-4.)
(7) Input pin is connected to the clamp diode to the power supply pin. When the input signal exceeds the supply rails 0.3 V or more (below the GND rail 0.3 V or more), the input current must be limited to less than 10 mA .

## ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause permanent damage and may degrade the lifetime and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

## - ELECTRICAL CHARACTERISTICS

## ELECTRICAL CHARACTERISTICS (Analog Input)

Unless otherwise specified, all limits ensured for $\mathrm{T}_{\mathrm{a}}=+25^{\circ} \mathrm{C}, \mathrm{VDD}=5.0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, VREFP $=0.5 \times \mathrm{VDD}$, VREFN $=0 \mathrm{~V}$, PGAIN1 $=$ PGAIN2 $=1$, VCIN2 $=0.5 \times$ VDD, DR $=0.814 \mathrm{ksps}$ or 1.63 ksps

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analog Input 1 (PGA1 = unused, PGA2 = used, PGAIN2 = 1 or 4$)$ |  |  |  |  |  |  |
| Differential Input Voltage Range 1 | VDIN1 |  | - | $\begin{gathered} \pm \text { VREF } \\ / \text { (PGAIN2) } \end{gathered}$ | - | V |
| $\begin{gathered} \text { Common Mode Input Voltage } \\ \text { Range } 1 \\ \hline \end{gathered}$ | VCIN1 |  | GND | (PGA12) | VDD | V |
| Input Impedance 1 | ZIN1 | $\begin{gathered} \hline \text { FMOD }=1.25 \mathrm{MHz} \\ \text { PGAIN2 }=1 \\ \hline \end{gathered}$ | - | 600 | - | $k \Omega$ |
|  |  | $\begin{gathered} \text { FMOD }=1.25 \mathrm{MHz} \\ \text { PGAIN2 }=4 \\ \hline \end{gathered}$ | - | 300 | - | $k \Omega$ |
| Common Mode Rejection Ratio 1 | CMRR1 | PGAIN2 = 1 | 70 | 90 | - | dB |

Analog Input 2 (PGA1, $2=$ used, PGAIN1 $=1$ or 2 or 4 or 8 or 16 or 32 or 64 or 128, PGAIN2=1 or 4 )

| Analog Input 2 (PGA1, 2 = used, PGAIN1 = 1 or 2 or 4 or 8 or 16 or 32 or 64 or 128, PGAIN2 $=1$ or 4) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Differential Input Voltage <br> Range 2 | VDIN2 | PGAIN1 $\geq 2$ | - | ( $\pm$ VREF) <br> $/($ PGAIN1 <br> xPGAIN2) | - | V |
| Common Mode Input Voltage <br> Range 2 | VCIN2 |  | 0.1 | - | VDD <br> -1.2 | V |
| Input Impedance 2 | ZIN2 |  | - | 100 | - | $\mathrm{M} \Omega$ |
| Common Mode Rejection <br> Ratio 2 | CMRR2 | PGAIN1 $=2$ <br> PGAIN2 $=1$ <br> CHOP $=0 N$ | 70 | 90 | - | dB |

## ELECTRICAL CHARACTERISTICS (Reference Voltage Input)

Unless otherwise specified, all limits ensured for $\mathrm{T}_{\mathrm{a}}=+25^{\circ} \mathrm{C}, \mathrm{VDD}=5.0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reference Voltage | VREF | VREF = VREFP - VREFN | 2.0 | - | VDD | V |
| VREFN Input Voltage Range | VREFN |  | 0 | - | $\begin{aligned} & \hline \text { VDD } \\ & -2.5 \\ & \hline \end{aligned}$ | V |
| Input Impedance 3 | ZIN3 | $\begin{gathered} \text { FMOD }=1.25 \mathrm{MHz} \\ \text { PGAIN2 }=1 \end{gathered}$ | - | 180 | - | k ת |
|  |  | $\begin{gathered} \text { FMOD }=1.25 \mathrm{MHz} \\ \text { PGAIN2 }=4 \end{gathered}$ | - | 250 | - | k $\Omega$ |

## ELECTRICAL CHARACTERISTICS (Internal Regulator)

Unless otherwise specified, all limits ensured for $\mathrm{T}_{\mathrm{a}}=+25^{\circ} \mathrm{C}, \mathrm{VDD}=5.0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output Voltage | REG |  | 2.376 | 2.4 | 2.424 | V |
| Temperature Drift | REG_TD | Ta $=25$ to $125^{\circ} \mathrm{C}$ <br> $(R E G 125-R E G 25) / R E G 25 x$ <br> $10 \wedge 6 /(125-25)(8)$ | - | -25 | - | ppm $/{ }^{\circ} \mathrm{C}$ |

(8) REG25 -> Measured value at $25^{\circ} \mathrm{C}$. REG125 $->$ Measured value at $125^{\circ} \mathrm{C}$.

## ELECTRICAL CHARACTERISTICS (Internal Oscillator)

Unless otherwise specified, all limits ensured for $\mathrm{T}_{\mathrm{a}}=+25^{\circ} \mathrm{C}, \mathrm{VDD}=5.0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OSC Frequency | FOSC |  | 2.25 | 2.5 | 2.75 | MHz |

## ELECTRICAL CHARACTERISTICS (Excitation Current Source)

Unless otherwise specified, all limits ensured for $\mathrm{T}_{\mathrm{a}}=+25^{\circ} \mathrm{C}, \mathrm{VDD}=5.0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output Current | IEX | $\mathrm{VINxx}=1.2 \mathrm{~V}$ | - | $\begin{aligned} & \hline 0.10,0.25, \\ & 0.50,1.00 \end{aligned}$ | - | mA |
| Absolute Value Deviation | IEX_E | $\begin{gathered} \text { (Measured Value - IEX) / IEX } \\ \times 100 \\ \hline \end{gathered}$ | - | - | $\pm 10$ | \% |
| Matching Error | IEX_ME | $\begin{gathered} \text { IEX1 = 1mA, } \\ \left(\text { IEX2 }- \text { IEX1) / IEX1 } \times 100{ }^{(9)}\right. \end{gathered}$ | - | - | $\pm 1$ | \% |
| Temperature Drift | IEX_TD | $\begin{gathered} \mathrm{Ta}=25 \text { to } 125^{\circ} \mathrm{C} \\ (\text { IEX125 }- \text { IEX25) / IEX125 x } \\ 10^{\wedge} 6 /(125-25)^{(10)} \\ \hline \end{gathered}$ | - | -300 | - | $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| Temperature Drift Matching Error | IEX_TD_ME | IEX2_TD - IEX1_TD ${ }^{(11)}$ | - | $\pm 2$ | - | ppm/ ${ }^{\circ} \mathrm{C}$ |

(9) IEX1 -> Measured value of Excitation current source 1.

IEX2 $\rightarrow>$ Measured value of Excitation current source 2.
(10) IEX25 $->$ Measured value at $25^{\circ} \mathrm{C}$.

IEX125 -> Measured value at $125^{\circ} \mathrm{C}$.
(11) IEX1_TD -> Temperature Drift of Excitation current source 1. IEX2_TD -> Temperature Drift of Excitation current source 2.

## ELECTRICAL CHARACTERISTICS (Programmable Gain Amplifier)

Unless otherwise specified, all limits ensured for $\mathrm{T}_{\mathrm{a}}=+25^{\circ} \mathrm{C}, \mathrm{VDD}=5.0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PGA1 Gain |  |  |  | $1,2,4,8$, |  |  |
|  | PGAIN1 |  | - | $16,32,64$, | - | V/V |
| PGA2 Gain | PGAIN2 |  | - | 1,4, | - | V/V |

## ELECTRICAL CHARACTERISTICS (Analog to Digital Convertor)

Unless otherwise specified, all limits ensured for $\mathrm{T}_{\mathrm{a}}=+25^{\circ} \mathrm{C}, \mathrm{VDD}=5.0 \mathrm{~V}$, $\mathrm{GND}=0 \mathrm{~V}$, VREFP $=0.5 \times \mathrm{VDD}, \mathrm{VREFN}=0 \mathrm{~V}$,
PGAIN1 $=$ PGAIN2 $=1$, VCIN2 $=0.5 \times$ VDD

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Resolution | N | No missing codes ${ }^{(12)}$ | 16 |  |  | Bit |
| Data Rate | DR | Single Conversion ${ }^{(13)}$ Normal Mode | 0.814k, 1.63k, 3.26k, 6.51k |  |  | sps |
|  |  | Single Conversion ${ }^{(13)}$ Low Power Mode | 0.203k, 0.407k, 0.814k, 1.63k |  |  |  |
| Clock Frequency | $\begin{aligned} & \text { FMOD } \\ & \text { (MDCK) } \end{aligned}$ | FMOD = FOSC / 2 | 1.125 | 1.25 | 1.375 | MHz |
| Integral Non Linearity | INL | $\begin{gathered} \text { best-fit-line method }^{(14)} \\ \text { VREFP }=5.0 \mathrm{~V} \\ \text { PGAIN1 }=2 \\ \hline \end{gathered}$ | - | $\pm 30$ | $\pm 60$ | ppm |
| Offset Error | OE | $\begin{aligned} & \text { PGAIN1 }=128 \\ & \text { CHOP }=\mathrm{OFF} \end{aligned}$ | - | $\pm 150$ | - | $\mu \mathrm{V}$ |
|  |  | $\begin{gathered} \text { PGAIN1 }=128 \\ \mathrm{CHOP}=\mathrm{ON} \end{gathered}$ | - | $\pm 1$ | $\pm 10$ | $\mu \mathrm{V}$ |
| Gain Error | GE | $\begin{gathered} \hline \text { PGAIN1 }=128 \\ \text { PGAIN2 }=1 \end{gathered}$ | - | $\pm 0.5$ | $\pm 2.0$ | \% |
| Noise Free Bit ${ }^{(12)(15)(16)}$ | NFB | $\begin{gathered} \text { VDIN2 }=0 \mathrm{~V} \\ \text { VREFP }=5.0 \mathrm{~V} \\ \text { VREFN }=0 \mathrm{~V} \\ \text { DR }=0.814 \mathrm{ksps} \end{gathered}$ | - | 15 | - | Bit |
|  |  | $\begin{gathered} \text { VDIN2 }=0 \mathrm{~V} \\ \text { VREFP }=5.0 \mathrm{~V} \\ \text { VREFN }=0 \mathrm{~V} \\ \text { DR }=1.63 \mathrm{ksps} \\ \hline \end{gathered}$ | - | 14 | - | Bit |

(12) This parameter is not production tested.
(13) There is no latency by one settling behavior.
(14) Guaranteed by design evaluation and several points test
(15) See table of Effective resolution and Noise Free Bit(NFB) (see page 25 to 26).
(16) NFB represents the ADC output code variations $6.6 \sigma$ with the differential input shorted.

## ELECTRICAL CHARACTERISTICS (Power Supply / Supply Current)

Unless otherwise specified, all limits ensured for $\mathrm{T}_{\mathrm{a}}=+25^{\circ} \mathrm{C}, \mathrm{VDD}=5.0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power Supply Voltage | VDD |  | 2.7 | 5.0 | 5.5 | V |
| Supply Current Normal Mode | IDD | PGA OFF | 1.4 | 2.3 | 3.3 | mA |
|  |  | PGA ON | 2.7 | 4.0 | 5.7 | mA |
| Supply Current Low Power Mode | IDDLow | PGA OFF | 0.6 | 0.9 | 1.4 | mA |
|  |  | PGA ON | 0.85 | 1.3 | 1.9 | mA |
| Supply Current Sleep Mode | IDDsleep | Sleep Mode | 0.14 | 0.27 | 0.4 | mA |
| Supply Current Standby Mode | IDDstby | Standby Mode STBY = VDD Regulator OFF | - | 0.001 | 0.1 | $\mu \mathrm{A}$ |

## ELECTRICAL CHARACTERISTICS (Digital I/Os)

Unless otherwise specified, all limits ensured for $\mathrm{T}_{\mathrm{a}}=+25^{\circ} \mathrm{C}, \mathrm{VDD}=5.0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| High-level input <br> voltage | $\mathrm{V}_{\text {ih }}$ |  | 0.7 <br> $\times \mathrm{VDD}$ | - | - | V |
| Low-level input <br> voltage | $\mathrm{V}_{\text {il }}$ |  | - | - | 0.2 |  |
| High-level output <br> voltage | $\mathrm{V}_{\text {oh }}$ | Ioh max. $=6 \mathrm{~mA}$ | 0.8 <br> $\times \mathrm{VDD}$ | - | - | V |
| Low-level output <br> voltage | $\mathrm{V}_{\text {ol }}$ | Iol max. $=6 \mathrm{~mA}$ | - | - | 0.4 | V |

ELECTRICAL CHARACTERISTICS (Serial Peripheral Interface)

| Parameter | Symbol | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SPI clock frequency | $\mathrm{f}_{\text {sck }}$ | - | - | 10 | MHz |
| Setup time, CSB falling edge to first SCK rising edge | t1 | 45 | - | - | nsec |
| Hold time, final SCK falling edge to CSB rising edge | t2 | 45 | - | - | nsec |
| Pulse duration, SCK high | t3 | 45 | - | - | nsec |
| Pulse duration, SCK low | t4 | 45 | - | - | nsec |
| Setup time, SDI input data valid before SCK falling edge | t5 | 10 | - | - | nsec |
| Hold time, SDI input data valid after SCK falling edge | t6 | 10 | - | - | nsec |
| Setup time, CSB falling edge to SDO / RDYB output data | t7 | 0 | - | 30 | nsec |
| Setup time, SCK rising edge to SDO / RDYB output data | t8 | 0 | - | 40 | nsec |
| Hold time, SCK falling edge of LSB to SDO / RDYB output data | t9 | 10 | - | 50 | nsec |
| Setup time, CSB rising edge to SDO / RDYB changing to HiZ | t10 | 0 | - | 30 | nsec |
| Reset time | trstw | - | - | 400 | nsec |

- The SPI AC timing is shown in the figure below. It is the communication of 10 Mbps at the highest speed.
- Capacitance Load of SDO / RDYB terminal is assumed to 40pF


SPI AC timing

## - REGISTER DESCRIPTION

NA2200 has register (list shown below) which can access it through SPI bus.
Registers with different data lengths (1 to 3 bytes) are assigned to 4-Bit register address.

| Register Address | Register Name | Data Length [byte] |
| :---: | :---: | :---: |
| 0x0 | CTRL | 2-Byte (16-Bit) |
| 0x1 | ADCDATA | 2-Byte (16-Bit) |
| 0x2 | IEXCONF | 2-Byte (16-Bit) |
| 0x3 | PGACONF | 1-Byte (8-Bit) |
| 0x4 | CLKCONF | 1-Byte (8-Bit) |
| 0x5 | Not used | - |
| 0x6 | OPTION0 | 1-Byte (8-Bit) |
| 0x7 | Not used | - |
| 0x8 | GAIN1 | 3-Byte (24-Bit) |
| 0x9 | GAIN2 | 3-Byte (24-Bit) |
| 0xA | Not used | - |
| 0xB | Not used | - |
| 0xC | OFFSET1 | 3-Byte (24-Bit) |
| 0xD | OFFSET2 | 3-Byte (24-Bit) |
| 0xE | Not used | - |
| 0xF | Not used | - |

< View of the register table>

| Register Name |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bit | $[7]$ | $[6]$ | $[5]$ | $[4]$ | $[3]$ | $[2]$ | $[1]$ | $[0]$ |
| Bit Name |  |  |  |  |  |  |  |  |
| R / W |  |  |  |  |  |  |  |  |
| Reset |  |  |  |  |  |  |  |  |

R / W: Bit of attribute (Read or Write)

- R (Read Only) : Read only
- W (Write Only) : Write only (At the time of read, return "0".)
- RW (Read Write) : Read \& Write
- RC (Read / Write 1 to Clear bit) : Read returns the register value. Writing 1 clears the bit to 0 . Writing 0 does not affect the operation.

Reset: Reset value in register
Set to the reset value by SPI reset command and power-on reset.

## - REGISTER DESCRIPTION

CTRL Register

| Register Address: 0x0 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CTRL |  |  |  |  |  |  |  |  |
| Bit | [15] | [14] | [13] | [12] | [11] | [10] | [9] | [8] |
| Bit Name | - | CHSELN |  |  | - | CHSELP |  |  |
| R / W | - | RW |  |  | - | RW |  |  |
| Reset | - | 0x4 |  |  | - | 0x4 |  |  |
| Bit | [7] | [6] | [5] | [4] | [3] | [2] | [1] | [0] |
| Bit Name | RDYCNT |  | RDYB | OV | MODE |  |  |  |
| R / W | R |  | R | R | RW |  |  |  |
| Reset | 0x0 |  | 1 | 0 | 0x0 |  |  |  |
|  |  |  |  |  |  |  |  |  |
| Bit | Bit Name |  | Function |  |  |  |  |  |
| [15] | - |  | - - |  |  |  |  |  |
| [14:12] | CHSELN |  | Analog input channel setting of negative side. Refer the below table: CHSELP / CHSELN Register. |  |  |  |  |  |
| [11] |  |  |  |  |  |  |  |  |
| [10:8] | CHSELP ${ }^{\text {A }}$ |  | Analog input channel setting of positive side. Refer the below table: CHSELP / CHSELN Register. |  |  |  |  |  |
| [7:6] | RDYCNT |  | Modulo operation counter. <br> 2-Bit modulo operation counter that adds 1 each time the ADCDATA resister is updated |  |  |  |  |  |
| [5] | RDYB D <br>   <br>  0 <br>  1 |  | flag. W CDATA r <br> ion com ion non- | versi s bit <br> tion | s upd | bit is |  |  |
| [4] | OV |  | 0: Valid <br> 1: Overflow (Invalid) |  |  |  |  |  |
| [3:0] | MODE O <br>  W <br>  W <br>  $R$ |  | Operation mode setting. <br> When this bit is "write", sets the operation mode of ADC. <br> When this bit is "read", returns the current configuration state. <br> Refer the below table : MODE Register |  |  |  |  |  |

Table 1 CHSELP / CHSELN Bit

| CHSELP | Positive |
| :---: | :---: |
| $0 \times 0$ | VIN1P |
| $0 \times 1$ | VIN1N |
| $0 \times 2$ | VIN2P |
| $0 \times 3$ | VIN2N |
| $0 \times 4$ | VREFN |
| $0 \times 5$ | VREFP |
| $0 \times 6$ | REG |
| $0 \times 7$ | GND |


| CHSELN | Negative |
| :---: | :---: |
| $0 \times 0$ | VIN1P |
| $0 \times 1$ | VIN1N |
| $0 \times 2$ | VIN2P |
| $0 \times 3$ | VIN2N |
| $0 \times 4$ | VREFN |
| $0 \times 5$ | VREFP |
| $0 \times 6$ | REG |
| $0 \times 7$ | GND |

Table 2 MODE Bit

| MODE | Operation | Processing |
| :---: | :---: | :---: |
| 0x0 | Idle | Waiting state of conversion operation or calibration |
| 0x1 | Sleep | Setting the state of low power consumption which conversion operation or calibration is available. <br> Start-up time is inserted automatically before conversion operation. |
| 0x2 | Single conversion | Convert once the input channel that is selected in the CHSELP / N. After the conversion, the operation is "Idle ( $0 \times 0$ )" state. <br> Using the value of the "OFFSET1, 2" register. |
| $0 \times 3$ | Continuous conversion | Convert continuous the input channel that is selected in the CHSELP / N. Until the operation is set to "Idle ( $0 \times 0$ )", conversion will continue. Using the value of the "OFFSET1, 2" register. |
| 0x4 | Single conversion + CHOP | This is the same as "Single conversion ( $0 \times 2$ )", but the data rate is $1 / 2$. Not using the value of the "OFFSET1, 2" register. |
| 0x5 | Continuous conversion + CHOP | This is the same as "Continuous conversion ( $0 \times 3$ )", but the data rate is $1 / 3$. Not using the value of the "OFFSET1, 2" register. |
| 0x6 | Single conversion <br> $+\mathrm{CHOP}+\mathrm{IEX} \mathrm{CHOP}$ | This is the same as "Single conversion ( $0 \times 2$ )", but the data rate is $1 / 2$. Not using the value of the "OFFSET1, 2" register. CHOP operation is valid. The connection channel of IEX1 and IEX2 is switched in conjunction with the CHOP operation. |
| 0x7 | Continuous conversion $+\mathrm{CHOP}+\mathrm{IEX} \mathrm{CHOP}$ | This is the same as "Continuous conversion ( $0 \times 3$ )", but the data rate is $1 / 3$. Not using the value of the "OFFSET1, 2" register. CHOP operation is valid. The connection channel of IEX1 and IEX2 is switched in conjunction with the CHOP operation. |
| 0x8 | Not used ${ }^{(17)}$ | - - |
| 0x9 | Not used ${ }^{(17)}$ | - |
| $0 \times \mathrm{A}$ | Not used ${ }^{(17)}$ | - |
| 0xB | Not used ${ }^{(17)}$ | - |
| 0xC | Calibration system offset | Input is selected by CHSELP / N, system offset is calibrated. |
| 0xD | Calibration system gain | Input is selected by CHSELP / N, system gain is calibrated. |
| 0xE | Not used ${ }^{(17)}$ | - - |
| 0xF | Boot | Read only. It shows the state from the reset to change to "Idle ( $0 \times 0$ )". After the initial setting, automatically shifts to the "Idle ( $0 \times 0$ )". |

(17) Please do not absolutely use the "Not used" code. It will be the cause of failure.

## ADCDATA Register

Register Address: $0 \times 1$

(18) Relationship of conversion data ADCDATA and the analog input voltage $\mathrm{V}_{\text {in }}$ is as the following equation. (It assumed that the offset error and gain error are zero.)

$$
A D C D A T A=\frac{V_{i n}}{2 \times V R E F} \times \text { PGAIN } 1 \times \text { PGAIN } 2 \times 2^{16}=\frac{V_{i n}}{V R E F} \times \text { PGAIN } 1 \times \text { PGAIN } 2 \times 2^{15}
$$

Nisshinbo Micro Devices Inc.

## IEXCONF Register

Register Address: 0x2

| XCONF |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bit | [15] | [14] | [13] | [12] | [11] | [10] | [9] | [8] |
| Bit Name | IEX2SLP | IEX2C |  |  | - | IEX2 EN | IEX2SEL |  |
| R / W | RW | RW |  |  | - | RW | RW |  |
| Reset | 0 | 0x0 |  |  | - | 0 | $0 \times 0$ |  |
| Bit | [7] | [6] | [5] | [4] | [3] | [2] | [1] | [0] |
| Bit Name | IEX1SLP | IEX1C |  |  | - | IEX1_EN | IEX1SEL |  |
| R / W | RW | RW |  |  | - | RW | RW |  |
| Reset | 0 | 0x0 |  |  | - | 0 | 0x0 |  |
| Bit | Bit Name |  | Function |  |  |  |  |  |
| [15] | IEX2SLP | Condition setting of IEX2 at sleep mode by AUTOSLP bit = "1" of OPTION0 register. <br> 0: IEX2 current depends on IEX2C 1: IEX2 OFF |  |  |  |  |  |  |
| [14:12] | IEX2C | Current setting of IEX2.  <br>   <br> $0 \times 0:$ 0.10 mA <br> $0 \times 1:$ 0.25 mA <br> $0 \times 2:$ 0.50 mA <br> $0 \times 3:$ 1.00 mA <br> $0 \times 4$ to $0 \times 7:$ Not used $^{(17)}$. |  |  |  |  |  |  |
| [11] | - | - |  |  |  |  |  |  |
| [10] | IEX2_EN | Setting ON / OFF of IEX2. <br> 0: IEX2 OFF (Open) <br> 1: IEX2 ON |  |  |  |  |  |  |
| [9:8] | IEX2SEL | Connection setting of IEX2. <br> 0x0: VIN1P <br> 0x1: VIN1N <br> 0x2: VIN2P <br> 0x3: VIN2N |  |  |  |  |  |  |

(17) Please do not absolutely use the "Not used" code. It will be the cause of failure.

| Bit | Bit Name | Function |
| :---: | :---: | :---: |
| [7] | IEX1SLP | Condition setting of IEX1 at sleep mode by AUTOSLP bit = "1" of OPTION0 register. <br> IEX1 current depends on IEX1C <br> IEX1 OFF |
| [6:4] | IEX1C | Current setting of IEX1. <br> 0x0: 0.10 mA <br> $0 \times 1: \quad 0.25 \mathrm{~mA}$ <br> 0x2: 0.50 mA <br> 0x3: 1.00 mA <br> $0 \times 4$ to $0 \times 7$ : Not used ${ }^{(17)}$. |
| [3] | - | - |
| [2] | IEX1_EN | Setting ON / OFF of IEX1. <br> 0: IEX1 OFF (Open) <br> 1: IEX1 ON |
| [1:0] | IEX1SEL | Connection setting of IEX1. <br> 0x0: VIN1P <br> 0x1: VIN1N <br> 0x2: VIN2P <br> $0 \times 3$ : VIN2N |

(17) Please do not absolutely use the "Not used" code. It will be the cause of failure.

Nisshinbo Micro Devices Inc.

## PGACONF Register

Register Address: 0x3


## CLKCONF Register

Register Address: 0x4

(17) Please do not absolutely use the "Not used" code. It will be the cause of failure.
(19) Data rate is derived by the following equation. It will be the data rate of a single conversion.

$$
D R=F_{O S C} \times \frac{1}{O S R} \times \frac{1}{2^{(C L K D I V+1)}} \times \frac{1}{3}
$$

If FOSC is 2.5 MHz of (TYP.), Conversion data rate will be set in the table below.

| OSR | Date Rate [sps] |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | CLKDIV=0 <br> (Recommendation) | CLKDIV=1 ${ }^{(*)}$ | CLKDIV=2 ${ }^{(*)}$ | CLKDIV=3(*) |
| 512 | 0.814 k | 0.407 k | 0.204 k | 0.102 k |
| 256 | 1.63 k | 0.814 k | 0.407 k | 0.204 k |
| 128 | 3.26 k | 1.63 k | 0.814 k | 0.407 k |
| 64 | 6.51 k | 3.26 k | 1.63 k | 0.814 k |

$\left(^{*}\right)$ This parameter is not production tested.

## OPTIONO Register

Register Address: 0x6

| $[6]$ |  | $[5]$ | $[4]$ | $[3]$ | $[2]$ | $[1]$ | $[0]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bit | $[7]$ | $[6]$ | OPTION0 |  |  |  |  |
| Bit Name | CHIPID | LPW_EN | REF_INT_EN | CEMODE | CE | AUTOSLP |  |
| R/W | R | RW | RW | RW | RC | RW |  |
| Reset | $0 \times 2$ | 0 | 0 | $0 \times 0$ | 0 | 0 |  |


| Bit | Bit Name | Function |
| :---: | :---: | :---: |
| [7:6] | CHIPID | Used to identify the chip. |
| [5] | LPW_EN | Low power setting. <br> ADC operating clock frequency (FMOD) becomes FMOD = FOSC / 8 regardless of CLKDIV setting. <br> Normal Mode <br> Low Power Mode |
| [4] | REF_INT_EN | ADC reference voltage setting. <br> 0: External reference voltage VREFP / VREFN <br> 1: Internal reference voltage REF / GND |
| [3:2] | CEMODE | SPI communication error mode setting. <br> 0: Communication Error function OFF <br> Use prohibition <br> CRC8 <br> 3: Check Sum |
| [1] | CE | The communication error can be detected if CEMODE is set to 2 (CRC8) or 3 (Check Sum). <br> No communication error <br> Communication error (Sticky bit) |
| [0] | AUTOSLP | When MODE is Idle ( $0 \times 0$ ), set to ON / OFF of analog block <br> 0: ON (Wait) <br> 1: OFF (Power down) <br> When the customer change AUTOSLP from 1to 0 , conversion start is necessary to start-up time of the analog block. |

GAIN1 / GAIN2 Register
Register Address: 0x8, 0x9

|  | GAIN1 / GAIN2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bit | [23] | [22] | [21] | [20] | [19] | [18] | [17] | 7 | [16] | [15] | [14] | [13] | ${ }^{[12]}$ | ${ }^{[11]}$ | ${ }^{\text {[10] }}$ | [9] | [8] | [7] | [6] | [5] | [4] | [3] | [2] | [1] | [0] |
| Bit Name | GAIN |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| R / W | RW |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Reset | $0 \times 00$ |  |  |  |  |  |  |  |  | $0 \times 00$ |  |  |  |  |  |  |  | 0x00 |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Bit |  |  | Bit Name |  |  |  | Function |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| [23:0] |  |  | GAIN |  |  |  | The customer can do the external writing gain coefficient, when internal clock is active only. <br> In case of writing gain coefficient, please set to "0" AUTOSLP bit of OPTIONO register. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

OFFSET1 / OFFSET2 Register

|  | OFFSET1 / OFFSET2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bit | [23] | [22] | [21] | [20] | [19] | [18] | [17] | [16] | [15] | [14] | [13] | ${ }^{[12]}$ | ${ }^{[11]}$ | [10] | [9] | [8] | [7] | [6] | [5] | [4] | [3] | [2] | [1] | [0] |
| Bit Name | OFFSET |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| R / W | RW |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Reset | $0 \times 00$ |  |  |  |  |  |  |  | $0 \times 00$ |  |  |  |  |  |  |  | $0 \times 00$ |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Bit |  |  | Bit Name |  |  |  | Function |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| [23:0] |  |  | OFFSET |  |  |  | Offset coefficient derived in offset calibration or the external writing offset coefficient. <br> 20-bit signed coefficient, OFFSET [23:20] is sign-extended value. ${ }^{(20)}$ <br> The customer can do the external writing offset coefficient, when internal clock is active only. <br> In case of writing offset coefficient, please set to "0" AUTOSLP bit of OPTION0 register. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

(20) Sign - extended: If the sign is (-) fill the 1 in the free space. If the sign is (+) fill the " 0 " in the free space - In the case of -4 in decimal 8 - bit is " 11111100 ".

16 -bit sign extension is " 1111111111111100 ".

- In the case of +4 in decimal 8 -bit is " 00000100 "

16 -bit sign extension is " 0000000000000100 "
The GAINn and OFFSETn registers are used for the coefficients used in gain and offset calibration. " n " is determined by the setting value on the positive input side, CTRL Register 0x0 CHSELP[10:8]. Refer the below table: Data Calibration Coefficient Correspondence Table 3.

Table 3 Data Calibration Coefficient Correspondence Table

| CHSELP Set <br> Value | Positive | Gain $n$ Register | OFFSET $n$ <br> Register |
| :---: | :---: | :---: | :---: |
| $0 \times 0$ | VIN1P | GAIN1 | OFFSET1 |
| $0 \times 1$ | VIN1N | GAIN1 | OFFSET1 |
| $0 \times 2$ | VIN2P | GAIN2 | OFFSET2 |
| $0 \times 3$ | VIN2N | GAIN2 | OFFSET2 |
| $0 \times 4$ | VREFN | GAIN1 | OFFSET1 |
| $0 \times 5$ | VREFP | GAIN1 | OFFSET1 |
| $0 \times 6$ | REG | GAIN1 | OFFSET1 |
| $0 \times 7$ | GND | GAIN1 | OFFSET1 |

## - TYPICAL APPLICATION CIRCUIT



## Notes on External Parts

Place a decoupling capacitor $0.1 \mu \mathrm{~F}$ close to 11 pin (REG). A decoupling capacitor should be connected to ground for stability.
The regulator is optimized for NA2200 operation, so do not connect any components other than the decoupling capacitor to 11pin(REG).

It is recommended that 5 pin (VREFN) is connected to ground.
The printed circuit board (PCB) layout pattern example of NA2200 is shown below.


## - BLOCK DIAGRAM



## NA2200 Block Diagram

## - OPERATING DESCRIPTION

The NA2200 uses a PGA (Programmable Gain Amplifier) to amplify analog signals obtained from sensors and other devices connected to the VIN1P / VIN1N / VIN2P / VIN2N input terminals. Combination of PGA1 / PGA2 can amplify signals up to 512 times. The amplified signal is converted to digital data by a 16 -Bit $\Delta \Sigma$ ADC, and after signal processing such as offset calibration and gain calibration, the digital signal is output to the MCU via SPI communication. A built-in level shifter outputs digital signals at the VDD level, so it can be connected to a 5V MCU. It supports up to 2 inputs in differential mode and up to 4 inputs in single-ended mode.
It has two excitation current sources and can used for temperature controller applications using resistance temperature detectors.
The reference voltage source for the ADC can be set to either an external reference voltage VREFP / VREFN input externally or an internal reference voltage REG using an internal regulator.
In addition to Normal Mode, Low Power Mode (conversion speed 1/4 and current consumption $1 / 4$ compared to Normal Mode), Sleep Mode (OFF except bias and REG circuit), and Standby Mode (all circuit OFF, current consumption $0.1 \mu \mathrm{~A}$ or less) can be selected.

## - APPLICATION NOTES

## ■ TERMINAL DESCRIPTION

- 1pin (VIN1P), 2pin (VIN1N), 3pin (VIN2P), 4pin (VIN2N), Analog Input terminals, Excitation Current Source Output terminals
Analog input terminals for inputting signals from external sources such as sensors. It supports up to 2 inputs in differential mode and up to 4 inputs in single-ended mode.
CHSELP and CHSELN in CTRL register 0x0 select the analog input channel for data conversion (built-in multiplexer function).
NA2200 has two excitation current sources to provide a constant current to the sensors. IEXCONF register $0 \times 2$ selects the analog input channel to which the excitation current source is connected and the current value can be set.
- 5pin (VREFN), 6pin (VREFP), Reference Voltage Input terminals

Reference voltage input terminals. Negative input / positive input are supported.

## - 7pin (STBY), Standby terminal

Standby terminal. NA2200 is in Standby Mode when STBY = VDD.

- 8pin (VDD), Power Supply terminal

Power supply terminal. The applied DC voltage range is 2.7 V to 5.5 V .

## - 9pin (GND), 10pin (GND), Ground terminals

Ground terminals of NA2200.

## - 11pin (REG), Built-in regulator output terminal for digital power supply

NA2200 has a built-in regulator for digital power supply. 11pin (REG) is the output terminal.
A decoupling capacitor should be connected to ground for stability. Place a decoupling capacitor close to 11 pin (REG).
The regulator is optimized for NA2200 operation, so do not connect any components other than the decoupling capacitor.

- 12pin (CSB), SPI chip select terminal

NA2200 serial interface chip select terminal. It is a digital input terminal.
When the CSB terminal is high level, SCK and SDI are disabled and communication is not possible. When the CSB terminal is low level, SCK and SDI are enable and communication is possible. After the CSB terminal changes from high to low level, the state of the SPI slave interface is reset and the command byte must be resent.

## - 13pin (SDO/RDYB), SPI serial data output / RDYB terminal

NA2200 serial interface data output / RDYB terminal. It is a digital output terminal.
When reading, data from the SDO/RDYB terminal is communicated MSB first.
SDO/RDYB is synchronized to the rising edge of SCK.
The RDYB bit outputs " 1 " or " 0 " depending on whether the ADC is converting or not. (1: conversion in progress or 0 : conversion completed)

- 14pin (SDI), SPI serial data input terminal

NA2200 serial interface data input terminal. It is a digital input terminal. When writing, data to the SDI terminal is communicated MSB first.
SDI is captured on the falling edge of SCK.

- 15pin (SCK), SPI serial clock input terminal

NA2200 serial interface clock input terminal. It is a digital input terminal.

- 16pin (NC), Non connection

Non connection terminal. Ground the terminal.

## Power up sequence

When the power supply pin VDD reaches a voltage at which the circuit can operate, the internal reset is released by the built-in power-on reset circuit and initialization begins.
After the reset is released, the startup sequence of the NA2200 is completed after a waiting period of about $600 \mu \mathrm{sec}$.
(The waiting time of about $600 \mu \mathrm{sec}$ does not include the power-on time.)
After the startup sequence is completed, the device transitions to the idle state and is ready for AD conversion operation.

## - Effective resolution, Noise Free Bit (NFB)

Data Rate (DR) is speed at the time of single conversion (1 settling).
Output code variation $\sigma$ is the effective resolution in the VIN1P and VIN1N (or VIN2P and VIN2N) connected to VDD/2, 6.6 $\sigma$ is the NFB.

```
< Condition >
    FMOD=1.25MHz
    - VDD=5.0V, GND=0V
    - VREFP=5.0V, VREFN=0V
    - Differential input
    - CHOP OFF
    - Ta=+25*'C
```

Nisshinbo Micro Devices Inc.
(1) Normal Mode \& External REF

DR vs. Effective resolution (Unit: bit)

| OSR | $\begin{gathered} \text { DR } \\ {[\mathrm{sps}]} \end{gathered}$ | $\begin{aligned} & \text { PGA } \\ & \text { OFF } \end{aligned}$ | PGA ON |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | x1 | x2 | x4 | x8 | X16 | x32 | x64 | x128 | x256 | x512 |
| 512 | 0.814k | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
| 256 | 1.63k | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
| 128 | 3.26k | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 15 |
| 64 | 6.51k | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 | 12.5 |

DR vs. NFB (Unit: bit)

| OSR | $\begin{gathered} \mathrm{DR} \\ {[\mathrm{sps}]} \end{gathered}$ | $\begin{aligned} & \text { PGA } \\ & \text { OFF } \end{aligned}$ | PGA ON |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | x1 | x2 | x4 | x8 | x16 | x32 | x64 | x128 | x256 | x512 |
| 512 | 0.814k | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 14.5 | 14 |
| 256 | 1.63k | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 14.5 | 14 |
| 128 | 3.26k | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 13 | 12.5 |
| 64 | 6.51k | 11.5 | 11.5 | 11.5 | 11.5 | 11.5 | 11.5 | 11.5 | 11.5 | 11.5 | 11.5 | 10 |

(2) Low Power Mode \& External REF

DR vs. Effective resolution (Unit: bit)

| OSR | DR [sps] | $\begin{aligned} & \text { PGA } \\ & \text { OFF } \end{aligned}$ | PGA ON |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | x1 | x2 | x4 | x8 | X16 | x32 | x64 | x128 | x256 | x512 |
| 512 | 0.203k | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
| 256 | 0.407k | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
| 128 | 0.814k | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 14 | 14 |
| 64 | 1.63k | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 | 12.5 | 12.5 |

DR vs. NFB (Unit: bit)

| OSR | $\begin{gathered} \mathrm{DR} \\ {[\mathrm{sps}]} \end{gathered}$ | $\begin{aligned} & \text { PGA } \\ & \text { OFF } \end{aligned}$ | PGA ON |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | x1 | x2 | x4 | x8 | x16 | x32 | x64 | x128 | x256 | x512 |
| 512 | 0.203k | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 14.5 | 14.5 |
| 256 | 0.407k | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 14 | 14 |
| 128 | 0.814k | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 11.5 | 11.5 |
| 64 | 1.63k | 11.5 | 11.5 | 11.5 | 11.5 | 11.5 | 11.5 | 11.5 | 11.5 | 11.5 | 10 | 10 |

Nisshinbo Micro Devices Inc.
(3) Normal Mode \& Internal REF

DR vs. Effective resolution (Unit: bit)

| OSR | $\begin{gathered} \text { DR } \\ \text { [sps] } \end{gathered}$ | $\begin{aligned} & \text { PGA } \\ & \text { OFF } \end{aligned}$ | PGA ON |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | x1 | x2 | x4 | x8 | X16 | x32 | x64 | $\times 128$ | x256 | x512 |
| 512 | 0.814k | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
| 256 | 1.63k | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 15.5 |
| 128 | 3.26k | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 15 | 15 |
| 64 | 6.51k | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 12 | 12 |

DR vs. NFB (Unit: bit)

| OSR | $\begin{gathered} \text { DR } \\ {[\mathrm{sps}]} \end{gathered}$ | $\begin{aligned} & \text { PGA } \\ & \text { OFF } \end{aligned}$ | PGA ON |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | x1 | x2 | x4 | x8 | x16 | x32 | x64 | x128 | x256 | x512 |
| 512 | 0.814k | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 | 14 | 13.5 | 13 |
| 256 | 1.63k | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 13 | 13 |
| 128 | 3.26k | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 12 | 12 |
| 64 | 6.51k | 11.5 | 11.5 | 11.5 | 11.5 | 11.5 | 11.5 | 11.5 | 11.5 | 11.5 | 9.5 | 9.5 |

(4) Low Power Mode \& Internal REF

DR vs. Effective resolution (Unit: bit)

| OSR | $\begin{gathered} \text { DR } \\ {[\mathrm{sps}]} \end{gathered}$ | $\begin{aligned} & \text { PGA } \\ & \text { OFF } \end{aligned}$ | PGA ON |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | x1 | x2 | x4 | x8 | X16 | x32 | x64 | x128 | x256 | x512 |
| 512 | 0.203k | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
| 256 | 0.407k | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
| 128 | 0.814k | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 15 | 15 |
| 64 | 1.63k | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 13.5 | 12.5 |

DR vs. NFB (Unit: bit)

| OSR | $\begin{gathered} \text { DR } \\ {[\mathrm{sps}]} \end{gathered}$ | $\begin{aligned} & \text { PGA } \\ & \text { OFF } \end{aligned}$ | PGA ON |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | x1 | x2 | x4 | x8 | x16 | x32 | x64 | x128 | x256 | x512 |
| 512 | 0.203k | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 | 14 | 13.5 | 13.5 |
| 256 | 0.407k | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 13.5 | 13 |
| 128 | 0.814k | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 12.5 | 12 |
| 64 | 1.63k | 11.5 | 11.5 | 11.5 | 11.5 | 11.5 | 11.5 | 11.5 | 11.5 | 11.5 | 11 | 10 |

## ■ Digital filter frequency characteristic

The output of the $\Delta \Sigma$ modulator is converted to a digital value of high resolution by a digital filter (third-order Sinc filter).
Frequency characteristics will change depending on the data rate.
When the conversion data rate (DR) is $6.51 \mathrm{ksps}, 3.26 \mathrm{ksps}, 1.63 \mathrm{ksps}, 0.814 \mathrm{ksps}$, frequency characteristics of the digital filter is shown below. Characteristic is the case of $F M O D=1.25 \mathrm{MHz}$.


It has a first notch in the frequency of the data rate $\times 3$.
Or later, it has a notch to the integer multiple of the position.(21)
(e.x.) In the case 3.26 ksps (Figure of right)

Position of the notch

1. $9.8 \mathrm{kHz} \quad(3.26 \mathrm{kHz} \times 3 \times 1)$
2. $19.6 \mathrm{kHz}(3.26 \mathrm{kHz} \times 3 \times 2)$
3. $\quad 29.3 \mathrm{kHz}(3.26 \mathrm{kHz} \times 3 \times 3)$
4. $39.1 \mathrm{kHz}(3.26 \mathrm{kHz} \times 3 \times 4)$
( N ) $3.26 \mathrm{kHz} \times 3 \times \mathrm{N}$ ( N is an integer)


> DR=3.26ksps
(21) Position of the notch varies in proportion to the frequency of the FMOD

FMOD is $\pm 10 \%$ variation. Position of the notch is likely to vary $\pm 10 \%$ from the above figure.

## - Conversion Control

Set the conversion operation by MODE bit of CTRL register.

| MODE | OPERATION |
| :---: | :---: |
| $0 \times 0$ | Idle |
| $0 \times 1$ | Sleep |
| $0 \times 2$ | Single conversion |
| $0 \times 3$ | Continuous conversion |
| $0 \times 4$ | Single conversion + CHOP |
| $0 \times 5$ | Continuous conversion + CHOP |
| $0 \times 6$ | Single conversion + CHOP <br> + IEX CHOP |
| $0 \times 7$ | Continuous conversion + CHOP <br> + IEX CHOP |
| 0x8, $0 \times 9$ <br> $0 \times A, 0 \times B$ | Not used |
| $0 \times C$ | Calibration system offset |
| $0 \times D$ | Calibration system gain |
| $0 \times E$ | Not used |
| $0 \times F$ | Boot |



## < Definition of time >

(1) ADC conversion time of basic: $\mathrm{T}_{\text {adc }}$ ( sec )

$$
T_{a d c}=O S R / F M O D
$$

OSR : Over Sampling Rate
FMOD: Clock Frequency of ADC
(2) Calculation time for data correction (after ADC conversion) : $\mathrm{T}_{\text {cal }}$ (sec)

$$
T_{c a l}=40 / \text { FOSC } \quad \text { FOSC : Clock Frequency of Internal Oscillator }
$$

(3) Calculation time for gain coefficient (after gain calibration) : $\mathrm{T}_{\text {div }}$ (sec)

$$
T_{d i v}=70 / F O S C
$$

(4) Setup time: $T_{s}$

When the analog block is ON (AUTOSLP bit of OPTION 0 register = "0"), setting the MODE bit in CTRL register to operation mode starts operation after $\mathrm{T}_{\mathrm{s}}$ (about $10 \mu \mathrm{sec}$ ). The case where the MODE bit is switched from "Idle ( $0 \times 0$ )" to "single conversion (0x2)" is shown below.


MODE | $0 \times 0$ | $0 \times 2$ |
| :---: | :---: |

Setup time AUTOSLP=0
(5) Startup wait time : $T_{\text {wu }}$

Waiting time of $\mathrm{T}_{\mathrm{wu}}$ (about $70 \mu \mathrm{sec}$ ) is required when changing the analog block from OFF to ON (AUTOSLP bit from "1" to " 0 "). The figure below shows the case where the MODE bit is switched from "sleep ( $0 \times 1$ )" to "single conversion ( $0 \times 2$ )".


## Single conversion operation (MODE =0x2)

It is the basic conversion of NA2200.
Even if the input signal is switched by the multiplexer (external), waiting time for converted data is unnecessary. (1 settling, zero latency)

When the conversion cycle is long, the recommended usage is that converting once and power-down the remaining period. So, the consumption current of NA2200 can be reduced. It is the optimum conversion method for "switching input signals with multiplexer" and "low power consumption".


Single conversion timing

| STEP | DETAILS |
| :---: | :---: |
| (1) | Set to single conversion. (MODE bit in CTRL register = "0x2") |
| (2) | After the set-up time ( $\mathrm{T}_{\mathrm{s}}$ ), start the conversion. |
| (3) | Conversion completed with conversion time ( $3 \times \mathrm{T}_{\text {adc }}$ ). <br> The conversion data is the result of the convolution integration of $3 \times T_{\text {adc. }}$. ( $\Delta \Sigma$ Mod + Digital Filter) |
| (4) | Data is corrected with calculation time ( $\mathrm{T}_{\text {cal }}$ ). |
| (5) | Conversion data stored in ADCDATA register. At that time, RDYB bit changes from "1" to "0". |
| (6) | Shift to Idle state. (MODE bit= "0x0") |

In NA2200, the data rate is specified by the following formula. (Single conversion)

$$
D R=F_{O S C} \times \frac{1}{O S R} \times \frac{1}{2^{(C L K D I V+1)}} \times \frac{1}{3}
$$

The conversion data rate (DR) is DR_all when $T_{s}$ and $T_{\text {cal }}$ are considered. (In the table below, CLKDIV=0)

| OSR | DR $[\mathrm{sps}]$ | $3 \times T_{\text {adc }}(=1 / \mathrm{DR})[\mathrm{sec}]$ | $3 \times \mathrm{T}_{\text {adc }}+\mathrm{T}_{\mathrm{s}}+\mathrm{T}_{\text {cal }}[\mathrm{sec}]$ | DR_all $\left(=1 /\left(3 \times \mathrm{T}_{\text {adc }}+\mathrm{T}_{\mathrm{s}}+\mathrm{T}_{\text {cal }}\right)\right.$ [sps] |
| :---: | :---: | :---: | :---: | :---: |
| 512 | 0.814 k | 1.23 m | 1.26 m | 0.794 k |
| 256 | 1.63 k | 0.614 m | 0.640 m | 1.56 k |
| 128 | 3.26 k | 0.307 m | 0.333 m | 3.00 k |
| 64 | 6.51 k | 0.154 m | 0.180 m | 5.56 k |

## "Single conversion + CHOP" operation (MODE = 0x4)

Single conversion performs single conversion twice. By change VINxP and VINxN at the second conversion, the NA2200 offset can be removed in real time. The change of VINxP and VINxN is done automatically by the internal switch.

With single conversion, it is the optimum conversion method for "when you want to calibrate the offset in real time". Though, the data rate is half of single conversion.


Single conversion + CHOP timing

| STEP | DETAILS |
| :---: | :--- |
| $(1)$ | Set to single conversion + CHOP. (MODE bit in CTRL register = "0x4") |
| $(2)$ | After the set-up time (Ts), start the conversion. |
| $(3)$ | Conversion completed in conversion time $(6 \times$ Tadc). <br> The conversion data is the result of the convolution integration of $6 \times T_{\text {adc. ( (1st \& 2nd }}$ <br> conversion of " $\Delta \Sigma$ Mod + Digital Filter".) |
| $(4)$ | Data is corrected in calculation time (T Tal). |
| $(5)$ | Conversion data stored in ADCDATA register. <br> At that time, RDYB bit changes from "1" to "0". |
| $(6)$ | Shift to Idle state. (MODE bit= "0x0") |

## "Single conversion + CHOP + IEX CHOP" operation (MODE = 0x6)

Single conversion performs single conversion twice. By change VINxP and VINxN at the second conversion, the NA2200 offset can be removed in real time. The change of VINxP and VINxN is done automatically by the internal switch.
The excitation current setting is automatically switched in conjunction with the CHOP operation.
With single conversion, it is the optimum conversion method for "when you want to measure 3-wire RTD with high accuracy".
Though, the data rate is half of single conversion.


| STEP | DETAILS |
| :---: | :--- |
| $(1)$ | Set to single conversion + CHOP + IEX CHOP. (MODE bit in CTRL register = "0×6") |
| $(2)$ | After the set-up time (Ts), start the conversion. |
| $(3)$ | The setting IEX1SEL / IEX2SEL of the excitation current source is switched in conjunction with <br> the CHOP operation that switches the input polarity in the second conversion. |
| $(4)$ | Conversion completed in conversion time $\left(6 \times \mathrm{T}_{\text {adc }}\right)$. <br> The conversion data is the result of the convolution integration of $6 \times \mathrm{T}_{\text {adc. }}$. (1st \& 2nd <br> conversion of " $\Delta \Sigma$ Mod + Digital Filter".) |
| $(5)$ | Data is corrected in calculation time (T Tal). |
| $(6)$ | Conversion data stored in ADCDATA register. <br> At that time, RDYB bit changes from "1" to "0". |
| $(7)$ | Shift to Idle state. (MODE bit= "0x0") |

## Continuous conversion operation (MODE $=0 \times 3$ )

When input signals are switched by the multiplexer, the same waiting time as the first conversion (conversion A) is required. When input signal is not switched by multiplexer, wait time after the second conversion (conversion B) is unnecessary.

It is the optimum conversion method for "when input is not switched by multiplexer" and "when you want to maximize data rate". The data rate is three times that of single conversion.


| STEP | DETAILS |
| :---: | :---: |
| (1) | Set to continuous conversion. (MODE bit in CTRL register = "0x3") |
| (2) | After the set-up time ( $\mathrm{T}_{\mathrm{s}}$ ), start the conversion. |
| (3) | Conversion A (1st) completed in conversion time ( $3 \times \mathrm{T}_{\text {adc }}$ ). <br> The conversion data $A$ is the result of the convolution integration of conversion $A$ (" $3 \times \mathrm{T}_{\text {adc }}$ " of $\Delta \Sigma$ Mod + Digital Filter") |
| (4) | Data is corrected in calculation time ( $\mathrm{T}_{\text {cal }}$ ) |
| (5) | Conversion data A (1st) stored in ADCDATA register. At that time, RDYB bit changes from "1" to "0". |
| (6) | After completion of conversion B (2nd), RDYB bit changes from "0" to "1". <br> The conversion data $B$ is the result of the convolution integration of conversion $B$ (" $3 \times T_{\text {adc" }}$ of $\Delta \Sigma$ Mod + Digital Filter) |
| (7) | Data is corrected in calculation time ( $\mathrm{T}_{\text {cal }}$ ). |
| (8) | Conversion data B (2nd) stored (overwrite) in ADCDATA register. At that time, RDYB bit changes from "1" to "0". |

Repeat steps (5) to (8) until the operation mode is set to idle (MODE bit is set to " $0 \times 0$ ").

## "Continuous conversion + CHOP" operation (MODE $=0 \times 5$ )

By changing VINxP and VINxN every " $3 \times T_{\text {adc }}$ ", the NA2200 offset can be removed in real time. The change of VINxP and VINxN is done automatically by the internal switch.

When input signals are switched by the multiplexer, the same waiting time as the first conversion (conversion A ) is required. When input signal is not switched by multiplexer, wait time after the second conversion (conversion B) is unnecessary.

As with "single conversion + CHOP" operation, offset of whole chip can be calibrated in real time.
It is the optimal conversion method for "when you want to calibrate offsets in real time" with continuous conversion. Though, the data rate is $1 / 3$ of continuous conversion. (Same data rate as single conversion)


Continuous conversion + CHOP timing

| STEP | DETAILS |
| :---: | :---: |
| (1) | Set to continuous conversion + CHOP. (MODE bit in CTRL register = "0x5") |
| (2) | After the set-up time ( $\mathrm{T}_{\mathrm{s}}$ ), start the conversion. |
| (3) | Conversion A (1st) completed in conversion time ( $6 \times \mathrm{T}_{\text {adc }}$ ). <br> The conversion data $A$ is the result of the convolution integration of conversion $A$ (" $6 \times \mathrm{T}_{\text {adc" }}$ of $\Delta \Sigma$ Mod + Digital Filter") |
| (4) | Data is corrected in calculation time ( $\mathrm{T}_{\text {cal }}$ ). |
| (5) | Conversion data A (1st) stored in ADCDATA register. At that time, RDYB bit changes from "1" to "0". |
| (6) | After completion of conversion B (2nd), RDYB bit changes from "0" to "1". <br> The conversion data $B$ is the result of the convolution integration of conversion $B$ (" $6 \times T_{\text {adc" }}$ of $\Delta \Sigma$ Mod + Digital Filter) |
| (7) | Data is corrected in calculation time ( $\mathrm{T}_{\text {cal }}$ ). |
| (8) | Conversion data B (2nd) stored (overwrite) in ADCDATA register. At that time, RDYB bit changes from "1" to "0". |

Repeat steps (5) to (8) until the operation mode is set to idle (MODE bit is set to " $0 \times 0$ ").

## "Continuous conversion + CHOP + IEX CHOP" operation (MODE = 0x7)

By changing VINxP and VINxN every " $3 \times T_{\text {adc }}$ ", the NA2200 offset can be removed in real time. The change of VINxP and VINxN is done automatically by the internal switch.
The excitation current setting is automatically switched in conjunction with the CHOP operation.
When input signals are switched by the multiplexer, the same waiting time as the first conversion (conversion A) is required. When input signal is not switched by multiplexer, wait time after the second conversion (conversion $B$ ) is unnecessary.

As with "single conversion + CHOP" operation, offset of whole chip can be calibrated in real time.


Continuous conversion + CHOP + IEX CHOP timing

| STEP | DETAILS |
| :---: | :--- |
| $(1)$ | Set to continuous conversion + CHOP + IEX CHOP. (MODE bit in CTRL register = "0x7") |
| $(2)$ | After the set-up time (Ts), start the conversion. |
| $(3)$ | The setting IEX1SEL / IEX2SEL of the excitation current source is switched in conjunction with <br> the CHOP operation that switches the input polarity in the conversion time $\left(3 \times \mathrm{T}_{\text {adc }}\right)$. |
| $(4)$ | Conversion A (1st) completed in conversion time $\left(6 \times \mathrm{T}_{\text {adc) }}\right)$. <br> The conversion data A is the result of the convolution integration of conversion A ("6 x Tadc" of <br> $\Delta \Sigma$ Mod + Digital Filter") |
| $(5)$ | Data is corrected in calculation time (Tcal). |
| $(6)$ | Conversion data A (1st) stored in ADCDATA register. <br> At that time, RDYB bit changes from "1" to "0". |
| $(7)$ | After completion of conversion B (2nd), RDYB bit changes from "0" to "1". <br> The conversion data B is the result of the convolution integration of conversion B ("6 x Tadc" of <br> $\Delta \Sigma$ Mod + Digital Filter) <br> The setting IEX1SEL / IEX2SEL of the excitation current source is switched. |
| (8) | Data is corrected in calculation time (Tcal). |
| (9) | Conversion data B (2nd) stored (overwrite) in ADCDATA register. <br> At that time, RDYB bit changes from "1" to "0". |

Repeat steps (6) to (9) until the operation mode is set to idle (MODE bit is set to " $0 \times 0$ ").
With continuous conversion, it is the optimum conversion method for "when you want to measure 3-wire RTD with high accuracy".
Though, the data rate is $1 / 3$ of continuous conversion. (Same data rate as single conversion)

## Offset calibration operation (MODE $=0 \times C$ )

Timing is almost the same as single conversion operation.
Calculate the offset amount and save it in the OFFSET register (OFFSET1, OFFSET2).


Offset calibration timing

| STEP | DETAILS |
| :---: | :--- |
| $(1)$ | Set to offset calibration. (MODE bit in CTRL register = "0xC") |
| $(2)$ | After the set-up time ( $\left.T_{s}\right)$, start the conversion. |
| $(3)$ | Conversion is complete in conversion time (3 $\left.\times \mathrm{T}_{\text {adc }}\right)$. |
| $(4)$ | Conversion data stored in OFFSET register (OFFSET1, OFFSET2). |
| At that time, RDYB bit changes from "1" to "0". |  |
| $(5)$ | Shift to Idle state. (MODE bit= "0x0") |

For offset calibration, use the CHSELP / CHSELN bits in the CTRL register to select the input channel. In addition, select the REF_INT_EN bit in the OPTIONO register.

When the offset calibration command is executed, the following processing is automatically performed.

- Using the input channel selected by the CHSELP / CHSELN bit, AD conversion is performed with the reference voltage source of the ADC selected by the REF_INT_EN bit of the OPTIONO register, and the offset is calculated.
- Store calculated offset in OFFSET registers.

The example of internal ADC offset calibration.
(1) REF_INT_EN = 0 (ADC reference voltage = external reference VREFP / VREFN used)

When setting the following PGA gains and input channels, and the offset calibration command is executed, the offset calibration is performed.

- Set PGA1 to OFF (PGA1EN = 0x0) and set the PGA2 gain to "x1" (PGA2GAIN = 0x0).
- Applying VREFN internally to the positive and negative inputs of the ADC. (CHSELP $=0 \times 4, \operatorname{CHSELN}=0 \times 4$ )
- Calculate the offset.
- Store calculated offset in OFFSET registers.
(2) REF_INT_EN = 1 (ADC reference voltage = internal reference REG / GMD used)

When setting the following PGA gains and input channels, and the offset calibration command is executed, the offset calibration is performed.

- Set PGA1 to OFF (PGA1EN = 0x0) and set the PGA2 gain to "x1" (PGA2GAIN = 0x0).
- Applying GND internally to the positive and negative inputs of the ADC. (CHSELP $=0 \times 7$, CHSELN $=0 x 7$ )
- Calculate the offset.
- Store calculated offset in OFFSET registers.


## Gain calibration operation (MODE =0xD)

Timing is almost the same as "single conversion + CHOP" operation. Calculate the gain factor and save it in the GAIN register (GAIN1, GAIN2).


Gain calibration timing

| STEP | DETAILS |
| :---: | :--- |
| $(1)$ | Set to gain calibration. (MODE bit in CTRL register = "0xD") |
| $(2)$ | After the set-up time (Ts), start the conversion. |
| $(3)$ | Conversion is complete in conversion time (6 xTadc). |
| $(4)$ | The slope (gain) coefficient is calculated in the gain coefficient calculation time (Tdiv). |
| $(5)$ | The GAIN registers (GAIN 1, GAIN 2) are updated. |
| At that time, RDYB bit changes from "1" to "0". |  |
| $(6)$ | Shift to Idle state. (MODE bit= "0x0") |

For gain calibration, use the CHSELP / CHSELN bits in the CTRL register to select the input channel. In addition, select the REF_INT_EN bit in the OPTIONO register.

When the gain calibration command is executed, the following processing is automatically performed.

- Using the input channel selected by the CHSELP / CHSELN bit, AD conversion is performed with the reference voltage source of the ADC selected by the REF_INT_EN bit of the OPTION0 register, and the gain coefficient is calculated.
- Store calculated gain coefficient in GAIN registers.

The example of internal ADC gain calibration.
(3) REF_INT_EN = 0 (ADC reference voltage $=$ external reference VREFP / VREFN used)

When setting the following PGA gains and input channels, and the gain calibration command is executed, the gain calibration is performed.

- Set PGA1 to OFF (PGA1EN = 0x0) and set the PGA2 gain to "x1" (PGA2GAIN = 0x0).
- Applying VREF internally to the positive and negative inputs of the ADC.
(CHSELP = 0x5(VREFP), CHSELN = 0x4(VREFN))
- Calculate the gain coefficient.
- Store calculated gain coefficient in GAIN registers.
(4) REF_INT_EN = 1 (ADC reference voltage = internal reference REG / GMD used)

When setting the following PGA gains and input channels, and the gain calibration command is executed, the gain calibration is performed.

- Set PGA1 to OFF (PGA1EN = 0x0) and set the PGA2 gain to "x1" (PGA2GAIN = 0x0).
- Applying REG and GND internally to the positive and negative inputs of the ADC.
(CHSELP $=0 \times 6($ REG $), C H S E L N=0 \times 7(G N D))$
- Calculate the gain coefficient.
- Store calculated gain coefficient in GAIN registers.


## - Data calibration flow / Combination of conversion operation and calibration operation

"Data calibration flow" and "Combination of conversion operation and calibration operation" are explained.

## Single conversion or Continuous conversion

The figure below is a calibration flow block diagram of "single conversion" or "continuous conversion".
The offset calibration uses the value of the OFFSET register (OFFSET1, OFFSET2).
The gain calibration uses the values of the GAIN register (GAIN1, GAIN2).


| STEP | DETAILS |
| :---: | :---: |
| (1) | "Input" is the following value for the input voltage $\mathrm{V}_{\text {in }}$. <br> The full scale of the digital filter is eight times signed 16 bits $(262144=32768 \times 8)$. $\text { Input }=\frac{V_{i n}}{V R E F} \times P G A I N 1 \times P G A I N ~ 2 \times 262144$ |
| (2) | Subtract "OFFSET" calculated by offset calibration operation from "Input". |
| (3) | Multiply the result of step (2) by "GAIN" calculated by the gain calibration operation. In order to convert to signed 16-bit full scale, $1 /(0 \times 80000)=1 /(32768 \times 8)$ is also multiplied. |
| (4) | Confirm whether "-32768 $\leq$ (3) result $\leq+32768$ " is satisfied. If it is not satisfied, set the OV bit of the CTRL register to "1". If it is satisfied, set the OV bit of the CTRL register to " 0 ". |
| (5) | Store the calculation result in the ADCDATA register. If "OV=1" in step (4), the ADCDATA register is the minimum value ( -32768 ) or the maximum value ( +32767 ). $\text { ADCDATA }=(\text { Input }- \text { OFFSET }) \times \frac{G A I N}{0 x 80000}=\left(\frac{V_{\text {in }}}{V R E F} \times P G A I N ~ 1 \times P G A I N ~ 2 \times 262144-\text { OFFSET }\right) \times \frac{G A I N}{0 x 80000}$ |

(Example) When applying PGAIN1 $=$ PGAIN2 $=1, \mathrm{OFFSET}=0, \mathrm{GAIN}=0 \times 10000, \mathrm{VREF}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {in }}=1 \mathrm{~V}$, --> ADCDATA code is "9930".(22)

$$
A D C D A T A=\left(\frac{1 V}{3.3 V} \times 1 \times 1 \times 262144-0\right) \times \frac{0 x 10000}{0 x 80000}=9930
$$

(22) When thinking of NA2200 as a black box, it is intuitively understood that it is correct.

$$
A D C D A T A=\frac{V_{\text {in }}}{V R E F} \times P G A I N 1 \times P G A I N ~ 2 \times 2^{15}=\frac{1 V}{3.3 V} \times 1 \times 1 \times 32768=9930
$$

## "Single conversion + CHOP" or "Continuous conversion + CHOP"

The figure below is a block diagram of the calibration flow of "single conversion + CHOP" or "continuous conversion + CHOP".
Since offset is removed by CHOP operation, the offset register value is not used for offset calibration.
Otherwise, it is the same operation as "1. Single conversion or Continuous conversion" on the previous page.

"Single conversion + CHOP + IEX CHOP" or "Continuous conversion + CHOP + IEX CHOP"
"Single conversion + CHOP + IEX CHOP" or "Continuous conversion $+\mathrm{CHOP}+$ IEX CHOP" replaces the excitation current source in conjunction with CHOP operation
Otherwise, it is the same operation as " 2 . Single conversion + CHOP or Continuous conversion + CHOP".

## ■ SPI Interface

The interface is 4-wire SPI communication of CSB, SCK, SDI, SDO / RDYB. In case, CSB fixed to GND, NA2200 can use as 3 -wire SPI communication device.

When CSB is " 1 ", SCK and SDI are invalid. SDO / RDYB becomes high impedance.
After CSB changes from " 1 " to " 0 ", SPI communication always starts with a command byte.
When CSB is " 0 ", SCK and SDI become valid and these can communicate.
SDI is captured on the falling edge of SCK and SDO / RDYB is synchronized with the rising edge of SCK.
Bits are transferred in order from the MSB.
SPI communication is performed as follows.

| Step | Details |
| :---: | :--- |
| $(1)$ | Command byte transfer |
| $(2)$ | Read or write data transfer (1 byte or 2 byte or 3 byte data transfer) |

When the data transfer is completed, it waits for the command byte.
When SPI communication is not in progress, the RDYB bit value of the CTRL register is output from SDO / RDYB. RDYB bit outputs " 1 " or " 0 " depending on the ADC operation state. (1: Conversion in progress, 0 : Conversion end)

The above state is supplied from the NA2200 to the master device (microcomputer and others).
Therefore, the master device can confirm the conversion end without monitoring the NA2200 periodically.

## < Reading >


< Writing >


SPI communication format

## SPI command byte



Reading



Writing

Read command (Byte)


Write command (Byte)

| BIT | [7] | [6] | [5] | [4] | [3] | [2] | [1] | [0] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BIT NAME | A |  |  |  | RW | ZERO |  |  |
| R / W | W |  |  |  | W | W |  |  |
| VALUE | - |  |  |  | - | 0 |  |  |
| BIT | BIT NAME |  | FUNCTION |  |  |  |  |  |
| [7:4] | A | Specify the register address to be accessed. |  |  |  |  |  |  |
| [3] | RW | 0 : Write <br> 1: Read |  |  |  |  |  |  |
| [2:0] | ZERO | Always write "0" |  |  |  |  |  |  |

## SPI communication error detection

SPI communication error detection is valid, in case CEMODE bit of the OPTION0 register (Register address: 0x6) sets to CRC8 mode or Check Sum mode.
When the communication error detection is enable, one byte of Error check byte is added after read or write data transfer.
Read mode
NA2200 outputs the error check byte, after calculating CRC8 or Check Sum from command byte and reading data.
SPI master device such as microprocessor examines error check byte, and please confirm the accuracy of the reading data.


Write mode
Write the data by adding CRC8 or Check Sum to the command byte and the writing data bytes.
NA2200 examines the error check byte, and writes the data if it has no error.


SPI communication format with error check byte: Writing

## CRC8 mode

Generally, CRC has a stronger error check function than Check Sum, though it has a large MCU source because of a complex calculation.

Error check byte with CRC8 mode is CRC-8-ATM ( $x^{8}+x^{2}+x+1$ ).
Initial value is $0 \times F F$.
In case data has 3 bytes, calculating as follow.

| Step | Description |
| :---: | :---: |
| (1) | It takes Ex-OR of "MSB byte of data" and "Initial value: 0xFF". (MSB: Most Significant Bit, XOR: Exclusive OR) |
| (2) | If MSB of the result (1) is " 1 ", shift the data 1 bit to the left. And takes XOR of it and " 00000111 ". or <br> If MSB of the result (1) is " 0 ", shift the data 1 bit to the left. |
| (3) | If MSB of the result (2) is " 1 ", shift the data 1 bit to the left. And takes XOR of it and " 00000111 ". or <br> If MSB of the result ( 2 ) is " 0 ", shift the data 1 bit to the left. |
| (4) | Repeat the step (3) six times. (from (2) to (4), shift the data 1 bit to the left eight times) |
| (5) | It takes XOR of "the result (4)" and "middle byte of data". |
| (6) | If MSB of the result (5) is " 1 ", shift the data 1 bit to the left. And takes XOR of it and " 00000111 ". or <br> If MSB of the result (5) is " 0 ", shift the data 1 bit to the left. |
| (7) | If MSB of the result (6) is " 1 ", shift the data 1 bit to the left. And takes XOR of it and " 00000111 ". or <br> If MSB of the result ( 6 ) is " 0 ", shift the data 1 bit to the left. |
| (8) | Repeat the step (7) six times. (from (6) to (8), shift the data 1 bit to the left eight times) |
| (9) | It takes XOR of "the result (8)" and "LSB byte of data". (LSB: Least Significant Bit) |
| (10) | If MSB of the result (9) is " 1 ", shift the data 1 bit to the left. And takes XOR of it and " 00000111 ". or <br> If MSB of the result (9) is " 0 ", shift the data 1 bit to the left. |
| (11) | If MSB of the result (10) is " 1 ", shift the data 1 bit to the left. And takes XOR of it and " 00000111 ". or <br> If MSB of the result (10) is " 0 ", shift the data 1 bit to the left. |
| (12) | Repeat the step (11) six times. (from (9) to (11), shift the data 1 bit to the left eight times) The calculation of CRC8 is finished. |

The calculation method is shown as below.
The below is considered as the calculation method when the writing data is "0x201012".
(Register Address is set to "0x2", and writing data is set to " $0 \times 1012$ " in the IEXCONF register.)

> Writing data: $001000000001000000010010(0 \times 201012)$ Initial value: 11111111 (0xFF)

Step (1)

| MSB of Writing data <br> Initial value | $00100000(0 \times 20)$ <br> 11111111 <br> $(0 \times F F)$ |
| :--- | :--- |
| XOR | 11011111 |

Step (2)
If MSB of result (1) is " 1 ", shifts it 1bit to the left 10111110 (1st time)
Polynomial
00000111
XOR 10111001
Step (3)

| If MSB of result (2) is " 1 ", shifts it 1bit to the left <br> 00000111 |
| :--- |
| Polynomial |

XOR
01110101
Step (4): Repeat step (3) 6 times.
Shift 1bit to the left 11101010
If MSB of the above data is " 1 ", shifts it 1 bit to the left 11010100 (4th time) Polynomial

00000111
XOR 11010011
If MSB of the above data is " 1 ", shifts it 1 bit to the left 10100110 (5th time) Polynomial

00000111
XOR 10100001
If MSB of the above data is " 1 ", shifts it 1 bit to the left 01000010 (6th time) Polynomial 00000111

| XOR | 01000101 |  |
| :--- | :---: | ---: |
| Shift 1bit to the left | 10001010 | (7th time) |
| If MSB of the above data is "1", shifts it 1 bit to the left <br> Polynomial | 00010100 | (8th time) |
| XOR | 00010011 | $(0 x 13)$ |

Step (5)

| The result (4) <br> Middle byte of writing data | 00010011 $(0 \times 13)$ <br> 00010000 $(0 \times 10)$ |
| :--- | :--- | :--- |

XOR 00000011
Step (6)
Shift 1bit to the left 00000110 (1st time)
Step (7)
Shift 1bit to the left 00001100 (2nd time)


The calculation result is " $0 \times 41$ ".
You need add error check byte $0 \times 41$ ( 01000001 ) with CRC8 mode, if writing data is " $0 \times 201012$ ".
The calculation result is changed because of initial data.
Initial data is 1 byte (8bits), so there are 256 calculation results.

In fact, CPU program calculates error check byte with CRC8. Initial value is changed as below, error check byte changes.

- Initial value: $0 \times 00 \rightarrow$ error check byte: $0 \times 6 \mathrm{~A}$
- Initial value: $0 \times 80 \rightarrow$ error check byte: $0 \times 61$
\#include <stdio.h>
unsigned char crc8_gen( const unsigned char *buffer, size_t size)\{ const unsigned char polynomial $=0 \times 07 ; /^{\star} x^{\wedge} 8+x^{\wedge} 2+x+1$ */ unsigned char crc $=0 x F F ; /{ }^{*} \mathrm{CRC}$ initial value $=0 x F F * /$ unsigned char data;
int bit_count;
size_t $\mathrm{i}=0$;
for ( $; \mathrm{i}<$ size $\mathrm{i}_{++}$) \{
data $=\operatorname{crc}^{\wedge}{ }^{*}$ buffer++;
for ( bit_count = 0; bit_count < 8; bit_count++ )\{
if ( ( data \& 0x80 ) ! $=0$ ) \{ data <<= 1; data ${ }^{\wedge}=$ polynomial;
\} else \{ data <<= 1 ;
\}
\}
crc =data;
\}
return crc;
\}
int main () \{
unsigned char buffer[3];
unsigned char crc8;
/* Example:
Write 0x1012 to IEXCONF Register.
Command 0x201012
*/
buffer[0] = 0x20; /* Command Byte ( Address=2, Write) */
buffer[1] = 0x10; /* Write Data MS Byte */
buffer[2] = 0x12; /* Write Data LS Byte */
crc8 =crc8_gen( buffer, 3 );
printf( "CRC8 = 0x\%02X¥n", crc8 );
/* Result : CRC8 $=0 \times 41$ */
return 0 ;
\}


## Check Sum mode

The error check byte added in Check Sum mode is calculated by the following procedure. In case data is 3 byte, calculating as below.

| Step | Description |
| :---: | :--- |
| $(1)$ | Adding MSB byte, Middle byte and LSB byte of the data. <br> Overflow is ignored. <br> MSB: Most Significant Bit, LSB: Least Significant Bit) |
| $(2)$ | The bits of result (1) inverted (1's complement) is error check byte. |

The calculation method is shown as below.
The below is considered as the calculation method when the writing data is "0x201012".
(Register Address is set to "0x2", and writing data is set to " $0 \times 1012$ " in the IEXCONF register.)

Writing data: 001000000001000000010010 ( $0 \times 201012$ )

Step (1)

| MSB byte <br> Middle byte <br> LSB byte | 00100000 | $(0 \times 20)$ |
| :--- | :--- | :--- |
| Addition result | 00010000 | $(0 \times 10)$ |
| $(0 \times 12)$ |  |  |

Step (2)

| The result of step (1) | 01000010 | $(0 \times 42)$ |
| :--- | :--- | :--- |
| $1^{\prime}$ complement | 10111101 | $(0 \times B D)$ |

The calculation result is " $0 \times \mathrm{BD}$ ".
You need add error check byte (0xBD) with Check Sum mode, if writing data is "0x201012".

## SPI reset command

Transferring SDI=1 continuously for 39 bits after SDI=0 resets the chip.
In normal operation, since there is "0" in the ZERO [1: 0] bits of the SPI command byte, SDI=1 never becomes 39 consecutive bits.

Wait at least 400 nsec after reset and transfer the command byte of operation start. 400 nsec is the minimum required for internal startup time.


SPI reset command

## SPI communication example

< Single conversion >
This is an example of communication with the PGA gain setting implemented. (Processing in the shortest time)


| STEP | DETAILS |
| :---: | :--- |
| $(1)$ | Specify the address "0x0" of the CTRL register. |
| $(2)$ | Specify single conversion "0x2" (= MODE). |
| $(3)$ | Performs single conversion. <br> (Conversion time + setup time + data correction time ( $\left.=1 / \mathrm{DR}+\mathrm{T}_{s}+\mathrm{T}_{\text {cal }}\right)$ |
| $(4)$ | Specify the ADCDATA register (0x1). |
| $(5)$ | Read the conversion data (ADCDATA register). |

The table below shows the time when CLKDIV $=0$ and the operation clock of SPI is 5 Mbps .
It is understood that the time of SPI communication $\ll$ conversion time.

| OSR | Conversion time <br> $\left(1 / \mathrm{DR}+\mathrm{T}_{s}+\mathrm{T}_{\text {cal }}\right)[\mu \mathrm{sec}]$ | SPI communication time <br> $((1)+(2)+(4)+(5))[\mu \mathrm{sec}]$ |
| :---: | :---: | :---: |
| 512 | 1255 | $8(=1 /(5[\mathrm{Mbit} / \mathrm{s}]) \times 5[$ byte $] \times 8[\mathrm{bit} / \mathrm{byte}])$ |
| 256 | 640 |  |
| 128 | 333 |  |
| 64 | 180 |  |

## < Continuous conversion >



| STEP | DETAILS |
| :---: | :--- |
| $(1)$ | Specify the address "0x0" of the CTRL register and specify continuous conversion "0x3" (= MODE). |
| $(2)$ | Perform continuous conversion (first time). <br> After conversion, SDO / RDYB changes from "1" to "0". |
| $(3)$ | Specify the address "0x1" of the ADCDATA register. <br> SDO / RDYB changes from "0" to "1" when conversion data (ADCDATA register) is read. |
| $(4)$ | Perform continuous conversion (second time). <br> After conversion, SDO / RDYB changes from "1" to "0". |
| $(5)$ | Specify the address "0x1" of the ADCDATA register. <br> SDO / RDYB changes from "0" to "1" when conversion data (ADCDATA register) is read. |
| $(6)$ | Perform continuous conversion (third time). <br> After conversion, SDO / RDYB changes from "1" to "0". <br> $(7)$ |

SDO / RDYB is kept " 0 " when reading the third conversion result is not performed. If reading is not performed, it operates as follows.
(a) $\mathrm{SDO} / \mathrm{RDYB}$ changes from " 0 " to " 1 " when the fourth AD conversion before data correction ends.
(b) After the data correction time ( $\mathrm{T}_{\text {cal }}$ ), SDO / RDYB changes from "1" to "0".

At the point (a) above, the third conversion data is discarded.
If conversion data (ADCDATA register) is not read before the next (a) comes, the fourth data is also discarded. In order to read data safely, it is necessary to read the conversion data before (a) comes.

## - MARKING SPECIFICATION (SSOP-16-BD)

(1)(2)(3)(4)(5)(6)(7) Product Code Refer to Part Marking List
(8) to (12) Control Number


Part Marking List (SSOP-16-BD)

| Product Name | $(1)$ | $(2)$ | $(3)$ | $(4)$ | $(5)$ | $(6)$ | $(7)$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NA2200BDAE2S | A | 2 | 2 | 0 | 0 | A | S |

## NOTICE

There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or distributor before attempting to use AOI.

Nisshinbo Micro Devices Inc.

## - PACKAGE DIMENSIONS




- EXAMPLE OF SOLDER PADS DIMENSIONS



## Nisshinbo Micro Devices Inc.

SSOP-16-BD

## - PACKING SPEC

UNIT: mm
(1) Taping dimensions / Insert direction

(2) Taping state


Nisshinbo Micro Devices Inc.
(3) Reel dimensions

(4) Peeling strength

Peeling strength of cover tape
-Peeling angle 165 to $180^{\circ}$ degrees to the taped surface.

- Peeling speed $300 \mathrm{~mm} / \mathrm{min}$
-Peeling strength
0.1 to 1.3 N


Nisshinbo Micro Devices Inc.
(5) Packing state

<Label>Product Name, Quantity, Lot No., Mark



## ■ HEAT-RESISTANCE PROFILES



Nisshinbo Micro Devices Inc.

- REVISION HISTORY

| Date | Revision | Changes |
| :---: | :---: | :---: |
| May 23, 2024 | Ver. 1.0 | Initial release Datasheet |

1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon.
2. The materials in this document may not be copied or otherwise reproduced in whole or in part without the prior written consent of us.
3. This product and any technical information relating thereto are subject to complementary export controls (so-called KNOW controls) under the Foreign Exchange and Foreign Trade Law, and related politics ministerial ordinance of the law. (Note that the complementary export controls are inapplicable to any application-specific products, except rockets and pilotless aircraft, that are insusceptible to design or program changes.) Accordingly, when exporting or carrying abroad this product, follow the Foreign Exchange and Foreign Trade Control Law and its related regulations with respect to the complementary export controls.
4. The technical information described in this document shows typical characteristics and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our or any third party's intellectual property rights or any other rights.
5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death should first contact us.

- Aerospace Equipment
- Equipment Used in the Deep Sea
- Power Generator Control Equipment (nuclear, steam, hydraulic, etc.)
- Life Maintenance Medical Equipment
- Fire Alarms / Intruder Detectors
- Vehicle Control Equipment (automotive, airplane, railroad, ship, etc.)
- Various Safety Devices
- Traffic control system
- Combustion equipment

In case your company desires to use this product for any applications other than general electronic equipment mentioned above, make sure to contact our company in advance. Note that the important requirements mentioned in this section are not applicable to cases where operation requirements such as application conditions are confirmed by our company in writing after consultation with your company.
6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
7. The products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. We shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products.
8. Quality Warranty

8-1. Quality Warranty Period
In the case of a product purchased through an authorized distributor or directly from us, the warranty period for this product shall be one (1) year after delivery to your company. For defective products that occurred during this period, we will take the quality warranty measures described in section 8-2. However, if there is an agreement on the warranty period in the basic transaction agreement, quality assurance agreement, delivery specifications, etc., it shall be followed.
8-2. Quality Warranty Remedies
When it has been proved defective due to manufacturing factors as a result of defect analysis by us, we will either deliver a substitute for the defective product or refund the purchase price of the defective product.
Note that such delivery or refund is sole and exclusive remedies to your company for the defective product.
8-3. Remedies after Quality Warranty Period
With respect to any defect of this product found after the quality warranty period, the defect will be analyzed by us. On the basis of the defect analysis results, the scope and amounts of damage shall be determined by mutual agreement of both parties. Then we will deal with upper limit in Section 8-2. This provision is not intended to limit any legal rights of your company.
9. Anti-radiation design is not implemented in the products described in this document.
10. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
11. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
12. Warning for handling Gallium and Arsenic (GaAs) products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste.
13. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.


Nisshinbo Micro Devices Inc.

## Official website

https://www.nisshinbo-microdevices.co.jp/en/

## Purchase information

https://www.nisshinbo-microdevices.co.jp/en/buy/

