NB7140ZA Series

1-cell Li-ion Battery Protection IC with Forced Standby and Built-In System Reset Function

FEATURES

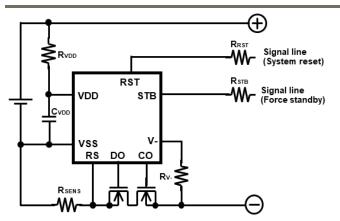
 Supply Current Normal mode: Typ. 1.50 µA / Max. 3.00 µA Forced standby mode: Max. 0.04 µA Standby mode: Max. 0.20 µA (V_{DET2}: Auto release type) Max. 0.04 µA (V_{DET2}: Latch 1/2 type) Detector Selectable Range and Accuracy Overcharge detection voltage (VDET1): 4.2 V to 4.7 V, ±15 mV Overdischarge detection voltage (VDET2): 2.1 V to 3.2 V, ±35 mV Discharge overcurrent detection voltage 1 (V_{DET31}): 0.0050 V to 0.0300 V, ±1.0 mV 0.0305 V to 0.0500 V, ±1.5 mV Discharge overcurrent detection voltage 2 (VDET32): 0.0110 V to 0.0600 V, ±2 mV 0.0605 V to 0.1000 V), ±4.0 % Charge overcurrent detection voltage (V_{DET4}): -0.0050 V to -0.0300 V, ±1.0 mV -0.0305 V to -0.0500 V, ±1.5 mV Short-circuit detection voltage 1 (V_{SHORT1}): 0.030 V to 0.120 V, ±4.0 mV 0.121 V to 0.200 V, ±5.0 mV • 0 V Battery Charging selectable: Permission / Inhibition • 0 V Battery Charging Inhibition Voltage (V_{NOCHG}): 1.000 V to 2.500 V, ±4.0 % Overcharge Release Type selectable: Auto Release / Latch Overdischarge Release Type selectable: Auto Release / Latch 1 / Latch 2 • Discharge Overcurrent Release Type selectable: Auto Release1 (V- = $V_{DD} \times 0.8 \text{ V}$) / Auto Release2 (V- = 0.070 V) / Latch (At charger connection) Discharge Overcurrent Detection Voltage 2 (V_{DET32}) selectable: Available / Unavailable Reset Detection Timing selectable: 1st Step / 2nd Step Reset Release Type selectable: Auto Release / V- rising

APPLICATIONS

Hearable / Wearable devices, Smart Phone, Handheld Data Terminals

GENERAL DESCRIPTION

The NB7140ZA is a 1-cell Li-ion / polymer battery protection IC which provides over-charge, overdischarge, charge / discharge overcurrent and short circuit protection, with built-in system reset function. The NB7140ZA can shift to the Forced Standby Mode by an external signal to STB pin to reduce own current consumption.


Low voltage and high accuracy overcurrent detection achieves a heat reduction on board by using low sense resistor. Low operating current and standby current can prolong the battery life even when its capacity is small, and the forced standby mode with STB pin too can prolong the small battery life.

System reset is possible by turning off the charge FET / discharge FET during MCU runaway with the RST pin.

WLCSP-8-P10 1.6 × 1.0 × 0.3 [mm]

TYPICAL APPLICATION CIRCUIT

NB7140ZA Application Circuit for 1st Step Reset Detection

PRODUCT NAME INFORMATION

NB7140 ZA **** * * E2 S

aa bbb c d ee f

Description of configuration

Suffix	Item	Description
aa	Package code	Indicates the package code.
bbb	Specific option code	Indicates a three-digit number code that combined set voltages. Refer to the table of set voltages for details.
С		Indicates a delay time code. Refer to the table of delay times for details.
d		Indicates a function code. Refer to the table of functions for details.
ee	Packing	Indicates the taping code of the package. Refer to <i>Packing Specification</i> in the appendix <i>Package Information</i> for details.
f	Grade	Indicates the quality grade. Refer to the table of grade for details.

Table of set voltages (bbb)

Symbol	V _{DET1}	V _{REL1} *1	V _{DET2}	V _{REL2} *1	V _{DET31} *2	V _{DET32} *2	V _{DET4}	V _{SHORT1} *2	V _{NOCHG}
Voltage Range	4.2 to	4.0 to	2.1 to	2.3 to	0.0050 to	0.0110 to	-0.0050 to	0.030 to	1.000 to
(Step)	4.7	4.7	3.2	3.6	0.0500	0.1000	-0.0500	0.200	2.500
[V]	(0.005)	(0.005)	(0.005)	(0.005)	(0.0005)	(0.0005)	(0.0005)	(0.001)	(0.05)

^{*1} Under the following conditions,

V_{REL1}: V_{DET1} - V_{REL1} = 0.400 V (Max.)

VREL2: VREL2 - VDET2 = 0.700 V (Max.)

^{*2} When selecting each set voltage of V_{DET31}, V_{DET32} and V_{SHORT1}, keep from overlapping among them in consideration of their output voltage accuracy. Especially, V_{SHORT1} should be higher than 10 mV from V_{DET31} and V_{DET32}.

Symbol	t	t	t	t	tvde:	T31 ^{*1}	t	t	t	t	+	t	t	t	t	t
Symbol	UVDE11	UVREL1	UVDE12	UREL2	type A	type B	CVDE132	UREL3	VDE14	VREL4	t short	t _{STBD}	t stbr	t _{RST1}	t _{RST2}	trstr
Time [ms]	1024	16	32 64 128	1.05	1024.0 2048.0 3072.0 4096.0	12.5 16.5 1024.0 4096.0	7.5 12.5 16.5	9.0	10 17	4	0.28	50 300	4.5 8.5 33.0	48 100	4.5	200 512
А	1024	16	64	1.05	102	24.0	16.5	9.0	17	4	0.28	300	33.0	48	4.5	512
D	1024	16	128	1.05	102	24.0	-	9.0	10	4	0.28	50	4.5	48	-	200
F	1024	16	32	1.05	12	2.5	-	9.0	10	4	0.28	50	8.5	100	-	200
G	1024	16	128	1.05	16	6.5	-	9.0	17	4	0.28	300	33.0	100	-	512

^{*1} t_{VDET31} can be selected from two types, A and B, with mask options, and each type has four patterns with trimming options.

Table of functions (d)

Function	Overcharge Overdischarge Discharge Overcurrent Overcurrent Overcurrent Overcurrent		0 V Battery		ed Reset	VSTBD	V _{RSTD}			
Function	Release	Release *1	Release	tvdet31	Detection 2 (VDET32)	Charging	Detection	Release	[M] 0.65 0.80 1.20 1.80 0.65	[V]
Type/ Condition	Auto Release Latch	Auto Release Latch1 Latch2	Auto Release1 Auto Release2 Latch	A B	Available Unavailable	Permission Inhibition	1 st Step 2 nd Step	V- Rising Auto Release	0.80 1.20	0.65 0.80 1.20 1.80
E	Latch	Latch1	Latch	В	Unavailable	Inhibition	1 st Step	V- Rising	0.65	0.65
F	Latch	Latch2	Latch	Α	Available	Inhibition	2 nd Step	Auto Release	0.80	0.80
J	Latch	Latch1	Auto Release1	В	Unavailable	Inhibition	1 st Step	V- Rising	0.65	0.65
К	Latch	Latch1	Auto Release1	В	Unavailable	Permission	1 st Step	V- Rising	0.65	0.65
Q	Auto Release	Auto Release	Auto Release1	В	Unavailable	Inhibition	1 st Step	V- Rising	0.65	0.65

^{*1} Overdischarge Release Conditions,

Auto Release: Cell voltage > V_{REL2}

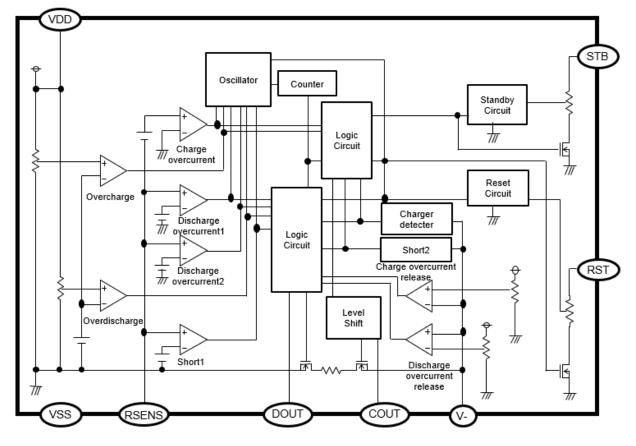
Latch 1: Cell voltage > V_{DET2} under charger connection

Latch 2: Charger connection

Grade

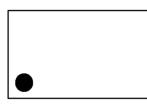
Grade	Application	Operating Temperature Range	Test Temperature
S	General-purpose and Consumer	−40°C to 85°C	25°C

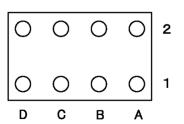
ORDER INFORMATION


For details of the orderable products, please refer to the Appendix "Product Code List".

Product Name	Package	RoHS	Halogen-Free	Plating Composition	Weight [mg]	Quantity Per Reel [pcs]
NB7140ZA****E2S	WLCSP-8-P10	Yes	Yes	Sn3.0Ag0.5Cu	0.73	5,000

Note: Contact our sales representatives for other specific option code (indicated with five asterisks).


BLOCK DIAGRAM


NB7140ZA Block Diagram

PIN DESCRIPTION

Top View

Bottom View

NB7140ZA (WLCSP-8-P10) Pin Configuration

Pin No.	Pin Name	I/O	Description
A1	STB	I	Forced standby instruction signal input pin
B1	V-	I	Charger negative input pin
C1	COUT	0	Charge control pin, CMOS output
D1	DOUT	0	Discharge control pin, CMOS output
A2	RST	I	Forced-off state input pin
B2	RSENS	I	Overcurrent detection input pin
C2	VDD	-	Power supply pin, the substrate level of the IC
D2	VSS	-	Ground pin for the IC

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit
Supply voltage	V _{DD}	–0.3 to 12	V
V- pin input voltage	V-	V_{DD} – 30 to V_{DD} + 0.3	V
RSENS pin input voltage	Vrsens	$V_{SS} - 0.3$ to $V_{DD} + 0.3$	V
RST pin input voltage	Vrst	V_{DD} – 30 to V_{DD} + 0.3	V
STB pin input voltage	Vstb	V_{DD} – 30 to V_{DD} + 0.3	V
COUT pin output voltage	Vcout	V_{DD} – 30 to V_{DD} + 0.3	V
DOUT pin output voltage	V _{DOUT}	$V_{\text{SS}}\!-\!0.3$ to $V_{\text{DD}}\!+\!0.3$	V
Power Dissipation	PD	150	mW
Junction temperature range	Tj	-40 to 125	°C
Storage temperature range	Tstg	–55 to 125	°C

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause permanent damage and may degrade the lifetime and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

ELECTROSTATIC DISCHARGE RATINGS

Parameter	Conditions	Rating	Unit
HBM (Human Body Model)	C = 100 pF, R = 1.5 kΩ	±2000	V
CDM (Charged Device Model)	Field Included CDM (FI-CDM)	±1000	V

ELECTROSTATIC DISCHARGE RATINGS

The electrostatic discharge test is done based on JESD47.

In the HBM method, ESD is applied using the power supply pin and GND pin as reference pins.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Rating	Unit
Operating input voltage	V _{DD}	1.5 to 5.0	V
Operating temperature range	Та	-40 to 85	°C

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

ELECTRICAL CHARACTERISTICS

Ta = 25°C, unless otherwise noted

NB7140ZA****E2S Electrical Characteristics

Parameter	Symbol		Condit	ions	Min.	Тур.	Max.	Unit	Remark *1
Minimum charging voltage for 0 V battery charger *2	Vstchg	V _{DD} – V _{SS} = 0 V difference volta		ed as $V_{DD} - V$ -			1.8	V	В
0 V battery charging inhibition voltage *3	V _{NOCHG}	$V_{DD} - V - = 4 V_{difference}$		$1 \text{ as } V_{DD} - V_{SS}$	V _{NOCHG} × 0.96	V _{NOCHG}	V _{NOCHG} × 1.04	V	А
Overcharge detection voltage	V _{DET1}	R _{VDD} = 330Ω, 0	C _{VDD} = ().1µF	V _{DET1} - 0.015	Vdet1	V _{DET1} + 0.015	V	А
Overcharge release voltage	V _{REL1}	$R_{VDD} = 330\Omega$,	C _{VDD} = (0.1µF	V _{REL1} - 0.045	V_{REL1}	V _{REL1} + 0.045	V	А
Overcharge detection delay time	t _{VDET1}	V_{DD} = 3.6 V \rightarrow	V _{DET1} +	0.1 V	t _{VDET1} × 0.80	t_{VDET1}	t _{VDET1} × 1.20	ms	А
Overcharge release delay time	t _{VREL1}	Overcharge: Auto Release Overcharge: Latch		$4.8 \text{ V} \rightarrow \text{V}_{\text{REL1}} - 0.1 \text{ V}$ $4.8 \text{ V} \rightarrow \text{V}_{\text{DET1}} - 0.1 \text{ V}$ 2 V	12.8	16.0	19.2	ms	A
Overdischarge detection voltage	V _{DET2}	Detect falling e			V _{DET2} - 0.035	Vdet2	V _{DET2} + 0.035	V	с
Overdischarge release voltage	V _{REL2}	Detect rising edge of supply voltage $V_{DD} = V_{DET2} + 0.15 \text{ V} \rightarrow V_{DET2} - 0.10 \text{ V}$			V _{REL2} - 0.070	V_{REL2}	V _{REL2} + 0.070	V	С
Overdischarge detection delay time	t _{VDET2}	$V_{DD} = V_{DET2} + 0$).15 V –	→ V _{DET2} – 0.10 V	t _{VDET2} × 0.80	t _{VDET2}	t _{VDET2} × 1.20	ms	с
Overdischarge release delay time	tvrel2	Overcharge: Auto Release Overcharge: Latch	Vercharge: $V_{DD} = V_{DET2} - 0.04 \text{ V} \rightarrow$ Auto Release $V_{REL2} + 0.1 \text{ V}$ Overcharge: $V_{DD} = V_{DET2} - 0.04 \text{ V} \rightarrow$		0.75	1.05	1.53	ms	с
V- pin pullup resistance for V_{DET2}	R _{V-1}	V _{DD} = 1.8 V			0.1	0.6	1.0	MΩ	Е
Discharge overcurrent detection voltage 1	V _{DET31}	V _{DD} = 3.6 V, Detect rising ec V _{RSENS}	lge of	V _{DET31} ≤ 0.030 V V _{DET31} > 0.030 V	V _{DET31} - 0.0010 V _{DET31} - 0.0015	V _{DET31}	V _{DET31} + 0.0010 V _{DET31} + 0.0015	V	F
Discharge overcurrent detection delay time 1	t _{VDET31}	V _{DD} = 3.6 V, V _{RSENS} = 0.0 V	$\rightarrow V_{DET}$	₃₁ + 0.005 V	t _{VDET31} × 0.80	t _{VDET31}	t _{vDET31} × 1.20	ms	F
Discharge overcurrent detection voltage 2	V _{DET32}	V _{DD} = 3.6V, Detect rising ec V _{RSENS}	lge of	V _{DET32} ≤ 0.060 V V _{DET32} > 0.060 V	V _{DET32} - 0.002 V _{DET32} × 0.96	V _{DET32}	V _{DET32} + 0.002 V _{DET32} × 1.04	V	F
Discharge overcurrent detection delay time 2	t _{VDET32}	V _{DD} = 3.6 V, V _{RSENS} = 0.0 V	$\rightarrow V_{DET}$	₃₂ + 0.005 V	t _{VDET32} × 0.80	t _{VDET32}	t _{VDET32} × 1.20	ms	F
Short circuit detection voltage 1	VSHORT1	V _{DD} = 3.6 V, Detect rising ec V _{RSENS}		V _{SHORT1} ≤ 0.120 V V _{SHORT1} > 0.120 V	V _{SHORT1} - 0.004 V _{SHORT1} - 0.005	Vshort1	V _{SHORT1} + 0.004 V _{SHORT1} + 0.005	V	F
Short circuit detection delay time *4	t short	V _{DD} = 3.6 V, V _R	_{SENS} = C	$0.0 \text{ V} \rightarrow 1.0 \text{ V}$	210	280	380	μs	F
Short circuit detection voltage 2	VSHORT2	Detect rising ec V _{DD} = 3.6 V, V _R	-		V _{DD} - 2.00	V _{DD} - 1.50	V _{DD} - 0.80	V	G

*1 The test circuits for device evaluation. Refer to the section of *TEST CIRCUITS* for detail information.
 *2 Only 0 V battery charging permission type
 *3 Only 0 V battery charging inhibition type
 *4 Short circuit release delay time is same as t_{VREL3}.

Datasheet NB7140ZA series

Ta = 25°C, unless otherwise noted

NB7140ZA*****E2S Electrical Characteristics (Continued)

Parameter	Symbol	Cond	ition	S	Min.	Тур.	Max.	Unit	Remark *1
Charger detection voltage 1	V _{CHGDET1}	Detect falling edge of V _{DD} = V _{DET2} + 0.05 V			0.500	0.800	1.100	V	G
Charger detection voltage 2	VCHGDET2	Detect falling edge of V _{DD} = V _{DET2} - 0.03 V	⁻ V-, R	R _{V-} = 1.0kΩ	-0.310	-0.100	-	V	G
		Detect follow a data of		Auto Release1	V _{DD} × 0.800 - 0.050	V _{DD} × 0.800	V _{DD} × 0.800 + 0.050		
Discharge overcurrent release voltage	V _{REL3}	Detect falling edge of V_{DD} = 3.6 V, V_{RSENS} = 0.0 V	V-,	Auto Release2	0.040	0.070	0.100	V	G
		VRSENS - 0.0 V		Latch	0.040	0.070	0.100		
Discharge overcurrent	Revent	Auto Release 1: V _{DD} = 3.6 V, V- = V _B	EL3 +	0.050 V	6.5	10.0	13.5	kΩ	н
release resistance	Rshort	Auto Release 2: V _{DD} = 3.6 V, V- = 0.2	200 V	1	20	45	70	K32	
Discharge overcurrent release delay time	t _{VREL3}	V _{DD} = 3.6 V, V- = 3.6 V _{RSENS} = 0.0 V	6 V –	→ 0.0 V	7.3	9.0	10.8	ms	G
Charge overcurrent	V _{DET4}	V_{DD} = 3.6 V, Detect falling edge	Vde	_{ET4} ≥ -0.030 V	V _{DET4} - 0.0010	V _{DET4}	V _{DET4} + 0.0010	V	
detection voltage	V DET4	of V _{RSENS}	Vde	_{ET4} < -0.030 V	V _{DET4} - 0.0015	V DET4	V _{DET4} + 0.0015	~	
Charge overcurrent detection delay time	t _{VDET4}	V_{DD} = 3.6 V, V_{RSENS}	= 0.0	$V \rightarrow -0.5 \ V$	t _{VDET4} × 0.80	t_{VDET4}	t _{VDET4} × 1.20	ms	I
Charge overcurrent release voltage	V_{REL4}	Detect rising edge o V _{DD} = 3.6V, V _{RSENS} =	/	0.040	0.070	0.100	V	J	
Charge overcurrent release delay time	t _{VREL4}	V _{DD} = 3.6 V, V- = -0 V _{RSENS} = 0.0 V	.5 V -	→ 1.0 V	3.2	4.0	4.8	ms	J
Forced standby detection voltage	V _{STBD}	Detect rising edge o V_{DD} = 3.6 V, V- = V _R			V _{STBD} × 0.80	V _{STBD}	V _{STBD} × 1.20	V	к
Forced standby detection delay time	tsтвD	V _{DD} = 3.6 V, V _{STB} = 0 V- = V _{RSENS} = 0.0 V	0.0 V	\rightarrow 3.6 V,	t _{sтвD} × 0.80	tsтвd	t _{sтвD} × 1.20	ms	к
Forced standby release delay time	t stbr	V _{DD} = 3.6 V, V- =3.6 V _{STB} = V _{RSENS} = 0.0		0.0 V,	t _{sтвк} × 0.80	t stbr	t _{sтвк} × 1.20	ms	L
STB pin pulldown resistance	R _{STBPD}	V_{DD} = 3.6 V, V_{STB} = 3 V- = V_{RSENS} = 0 V	3.6 V,	3	5.5	11.0	22.0	MΩ	М
V- pin pullup resistance in forced standby mode	Rv-2	V _{DD} = 3.6 V, V _{STB} = V- = V _{RSENS} = 0.0 V	3.6 V	3	40	70	120	kΩ	N
System reset detection voltage	V _{RSTD}	Detect rising edge o V_{DD} = 3.6 V, V- = V _R			V _{RSTD} × 0.80	V _{RSTD}	V _{RSTD} × 1.20	V	0
System reset 1 st step detection delay time	t _{RST1}	V _{DD} = 3.6 V, V _{RST} = 0 V- = V _{RSENS} = 0.0 V	0.0 V	\rightarrow 3.6V,	t _{RST1} × 0.80	t _{RST1}	t _{RST1} × 1.20	ms	0
System reset 2 nd step detection delay time * ²	t _{RST2}	V _{DD} = 3.6 V, V _{RST} = 3 V- = V _{RSENS} = 0.0 V	3.6 V	\rightarrow 0.0 V,	t _{RST2} × 0.80	t _{RST2}	t _{RST2} × 1.20	ms	0
System reset release delay time	trstr		Auto Release Type: V_{DD} = 3.6 V V- Rising Type: V_{DD} = 3.6 V,			trstr	t _{RSTR} × 1.20	ms	0, P
RST pin pulldown resistance	Rrstpd	V _{DD} = 3.6 V, V _{RST} = 3 V- = V _{RSENS} = 0.0 V	3.6 V	3	5.5	11.0	22.0	MΩ	Q

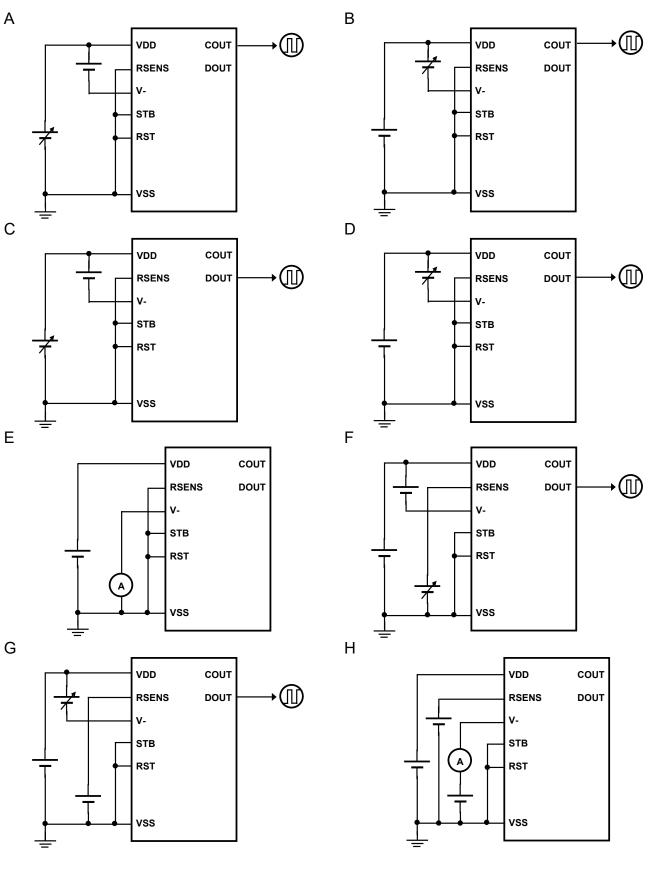
*1 The test circuits for device evaluation. Refer to the section of TEST CIRCUITS for detail information.

*2 Only Reset pulse detection type

Ta = 25°C, unless otherwise noted

NB7140ZA*****E2S Electrical Characteristics (Continued)

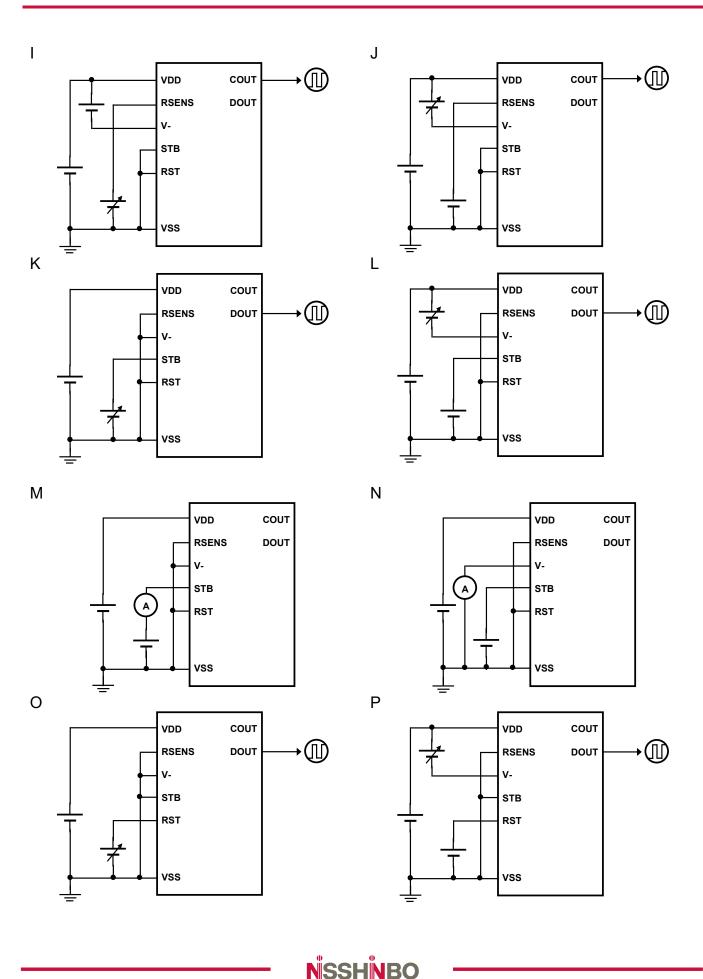
Parameter	Symbol	Cor	nditions	Min.	Тур.	Max.	Unit	Remark
COUT pin NMOS ON voltage	V _{OL1}	$I_{OL} = 50 \mu A, V_{DD} = A$	4.80 V		0.4	0.5	V	R
COUT pin PMOS ON voltage	V _{OH1}	Іон = –50µА, V _{DD} =	= 3.90 V	3.4	3.7		V	S
DOUT pin NMOS ON voltage	V _{OL2}	I _{OL} = 50µA, V _{DD} =	1.90 V		0.2	0.5	V	Т
DOUT pin PMOS ON voltage	V _{OH2}	Іон = –50µА, V _{DD} =	= 3.90 V	3.4	3.7		V	U
Cumply cumpet		V _{DD} = 3.9 V,	0 V battery charging: Permission		1.4	2.8		v
Supply current	IDD	V- = 0.0 V	0 V battery charging: Inhibition		1.5	3.0	μA	V
Supply current in forced standby mode	IFSTB	V _{DD} = V- = 3.9 V				0.04	μA	W
Standby current			Overdischarge: Auto release			0.20		
	ISTANDBY	V _{DD} = 1.9 V	Overdischarge: Latch 1 / 2			0.04	μA	W


*1 The test circuits for device evaluation. Refer to the section of TEST CIRCUITS for detail information.

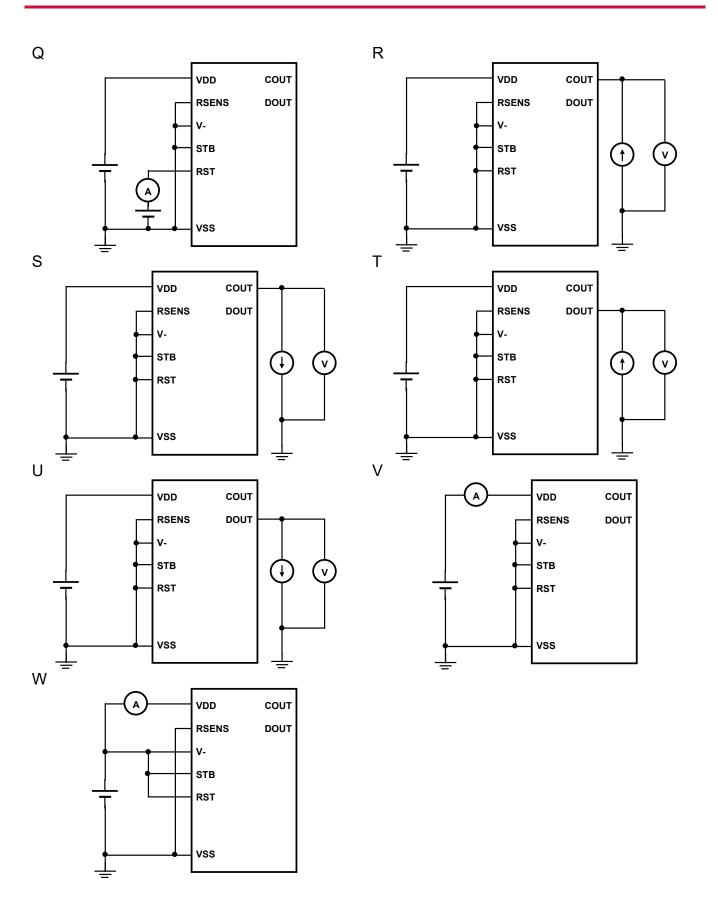
All test parameters listed in Electrical Characteristics are done under Ta = 25°C only.

NB7140ZA series

Test Circuits



NSSHNBO


Datasheet

Nisshinbo Micro Devices Inc.

NB7140ZA series

NB7140ZA series

THEORY OF OPERATION

Overcharge Protection

When the overcharge detection delay time (t_{VDET1}) passes under the condition that the VDD pin voltage (V_{DD}) exceeds the overcharge detection voltage (V_{DET1}), this IC enters the over-charge state.

In this state, the COUT pin becomes Low, and the charge control FET is turned off to stop charging. The V- pin voltage (V-) increases by the Vf voltage (Vf) of the internal parasitic diode than the VSS pin voltage (Vss) because the discharge current flows via the parasitic diode even when the charge control FET is off.

A release from the overcharge state must meet the following pin conditions and delay time according to the selected release type.

Туре	Pin Conditions	Delay Time
	$V_{-} < V_{REL4}$ and $V_{DD} < V_{REL1}$	
Auto Release	or	tvrel1
	$V_{-} > V_{REL4}$ and $V_{DD} < V_{DET1}$	
Latch	V- > V_{REL4} and V_{DD} < V_{DET1}	t _{VREL1}

Overdischarge Protection

When the overdischarge detection delay time (t_{VDET2}) passes under the condition that the VDD pin voltage (V_{DD}) falls below the over-discharge detection voltage (V_{DET2}), this IC enters the over-discharge state.

In this state, the DOUT pin becomes Low, and the discharge control FET is turned off to stop discharging. The V- pin voltage (V-) decreases by the Vf voltage (Vf) of the internal parasitic diode than the VSS pin voltage (Vss) because the charge current flows via the parasitic diode even when the discharge control FET is off.

In addition, when V- is pulled up to V_{DD} level and exceeds the charger detection voltage 1 (V_{CHGDET1}), the IC enters the standby state. It results in reducing the standby current (I_{STANDBY}) to a minimum.

A release from the overdischarge state must meet the following pin conditions and delay time according to the selected release type.

Туре	Pin Conditions	Delay Time
Auto Release	V- > V _{CHGDET1} and V _{DD} > V _{REL2} or V- < V _{CHGDET1} and V _{DD} > V _{DET2}	t _{VREL2}
Latch 1	V- < $V_{CHGDET1}$ and V_{DD} > V_{DET2}	tvrel2
Latch 2	V- < V _{CHGDET2}	t _{VREL2}

Discharge Overcurrent Protection

To monitor a discharge current, this IC measures a voltage difference of the sense resistor (R_{SENS}) connected between the RSENS and the VSS pins to detect the current value.

This IC has two levels of the discharge overcurrent detection voltage 1/2 (V_{DET31} / V_{DET32}). When the discharge overcurrent detection delay time (t_{VDET31}) passes under the condition that the discharge current, which is converted through R_{SENS} for current to-voltage conversion, exceeds V_{DET31} , this IC enters the discharge overcurrent state. In a case where V_{DET32} is enabled, this IC enters the discharge overcurrent detection delay time (t_{VDET32}) passes under the condition exceeding V_{DET32} .

In this state, the DOUT pin becomes Low, and the discharge control FET is turned off to shut off the discharge current.

A release from the discharge overcurrent state must meet the following pin condition and delay time according to the selected release type.

Туре	Pin Condition	Delay Time	Remarks
Auto Release 1	V- < V _{REL3} (Typ. V _{DD} × 0.800)	t _{VREL3}	V- is pulled down to the V _{SS} level inside the IC. Note1 (R _{SHORT} = Typ.10k Ω)
Auto Release 2	V- < V _{REL3} (Typ. 0.700 V)	t _{VREL3}	V- is pulled down to the V _{SS} level inside the IC. Note1 (R _{SHORT} = Typ.45k Ω)
Latch	V- < V _{REL3} (Typ. 0.700 V)	t _{VREL3}	V- is pulled up to the V_{DD} level inside the IC. $^{\text{Note2}}$

Note1: It is possible to release the abnormal condition of the load connected to the battery pack. When the discharge overcurrent release delay time (tvREL3) passes under the condition V- falls below VREL3, this IC releases from the discharge overcurrent state. V- can be expressed by the following equation.

 $V = V_{CELL} \times R_{SHORT} / (R_{SHORT} + R_{V} + R_{LOAD})$

VCELL : Battery voltage

R_{SHORT} : Discharge overcurrent release resistance

R_{V-} : External resistor for V- pin

R_{LOAD} : Load resistance to a battery pack

Note2: When connecting a charger to pull V- down, this IC releases from the discharge overcurrent state.

Short-circuit Current Protection

To monitor a short-circuit current, this IC measures a voltage difference of the sense resistor (R_{SENS}) connected between the RSENS and the VSS pins to detect the current value. When the short-circuit current, which is converted through RSENS for current-to-voltage conversion, exceeds the short-circuit detection voltage 1 (V_{SHORT1}), this IC enters the short-circuit state. But it is possible for this IC to avoid its state when the short-circuit current falls below V_{SHORT1} within the short-circuit detection delay time (t_{SHORT}).

In this state, the DOUT pin becomes Low, and the discharge control FET is turned off to shut off the short-circuit current. A release from the short-circuit state must meet the same condition and delay time as the discharge overcurrent protection.

Charge Overcurrent Protection

To monitor a charge current, this IC measures a voltage difference of the sense resistor (R_{SENS}) connected between the RSENS and the VSS pins to detect the current value. When the charge overcurrent detection delay time (t_{VDET4}) passes under the condition that the charge current, which is converted through RSENS for current-to-voltage conversion, falls below the charge overcurrent detection voltage (V_{DET4}), this IC enters the charge overcurrent state.

In this state, the COUT pin becomes Low, and the charge control FET is turned off to shut off the charge current.

A release from the charge overcurrent state must meet the following pin condition and delay time according to the selected release type.

Туре	Pin Condition	Delay Time	Remarks
Auto Release	$V - > V_{REL4}$	t _{VREL4}	V- is pulled up to the V_{DD} level inside the IC. $^{\text{Note}}$

Note: By disconnecting the charger, this IC releases from the charge overcurrent state.

0 V Battery Charging

This IC has the selectable charging function for the battery discharged to 0 V.

0 V Battery Charge Function "Permission"

This function allows to charge to the 0 V battery by connecting the charger with the minimum charging voltage (VSTCHG) and more.

0 V Battery Charge Function "Inhibition"

This function inhibits to charge to the battery with the 0 V-battery charging inhibition voltage (V_{NOCHG}) or less even when connecting the charger.

Forced-standby Function

When the forced standby detection delay time (t_{STBD}) passes under the condition that the STB pin voltage (V_{STB}) exceeds the forced standby detection voltage (V_{STBD}), this IC enters the forced standby detected state.

In this state, the IC turns off the charge and the discharge control FETs and the V- pin is pulled up to the VDD level by an internal resistor, here the V- pin pullup resistance is R_{V-2}.

After that, the IC enters the forced standby state when V- exceeds the charger detection voltage (V_{CHGDET1}). It results in reducing the supply current (I_{FSTB}) to a minimum.

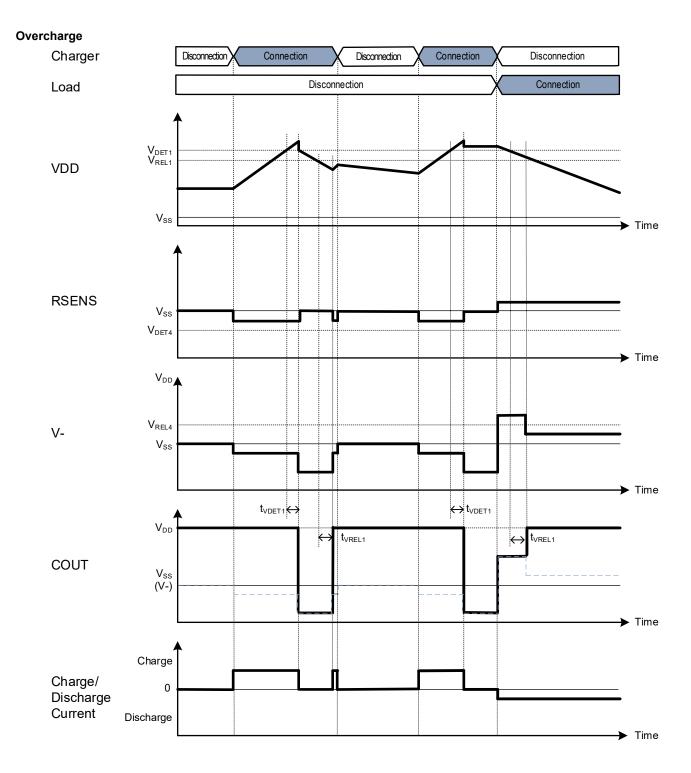
A release from the forced standby state must meet the following pin condition and delay time according to the selected release type.

Туре	Pin Condition	Delay Time	Remarks
Latch	V- < V _{CHGDET1}	tsтвr	V- is required to exceed V _{SHORT2} once for the release. The IC should not enter the forced standby state under connecting the charger.

Forced-reset Function

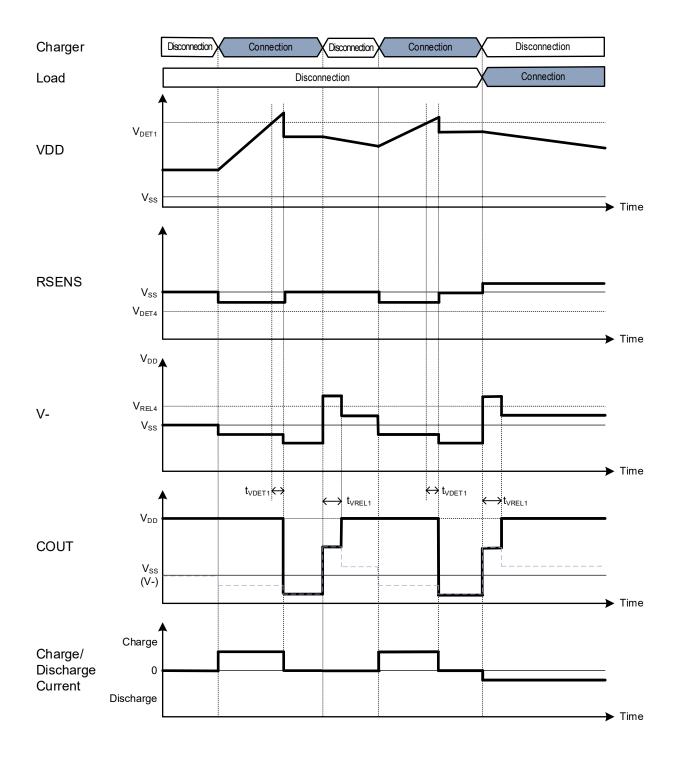
Forced reset detection must meet the following pin condition and delay time according to the selected detection type. In this state, the IC turns off the charge and the discharge control FETs.

Туре	Pin Condition	Delay Time	Remarks
1 st step detection	Vrst > Vrstd	trst1	1st step detect 1st step RST COUT /DOUT
	V _{RST} > V _{RSTD}	t _{RST1}	2nd step detect 1st step RST
2 nd step detection	Vrst < Vrstd	trst2	COUT /DOUT

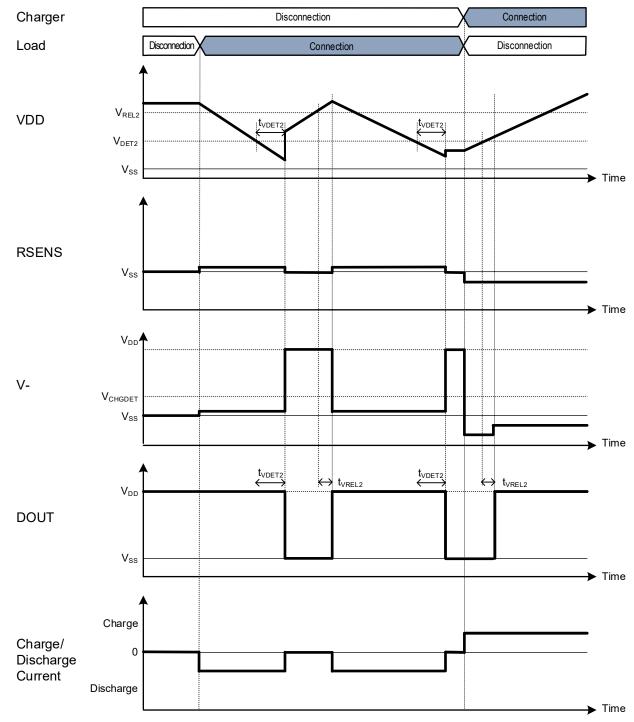

A release from the forced reset state must meet the following pin condition and delay time according to the selected release type.

Туре	Pin Condition	Delay Time	Remarks							
Auto release	-	t RSTR	Immediately after forced reset is detected, forced reset release delay time (t _{RSTR}) counting starts.							
	V- > Vshort2		After the system power is depleted, forced reset release delay time (t_{RSTR}) counting starts.							
V- rising	Vrst < Vrstd ^{NOTE}	t rstr	When the charger is connected, and the RST pin voltag (V _{RST}) falls below V _{RSTD} , forced reset release delay tim (t_{RST}) counting starts.							

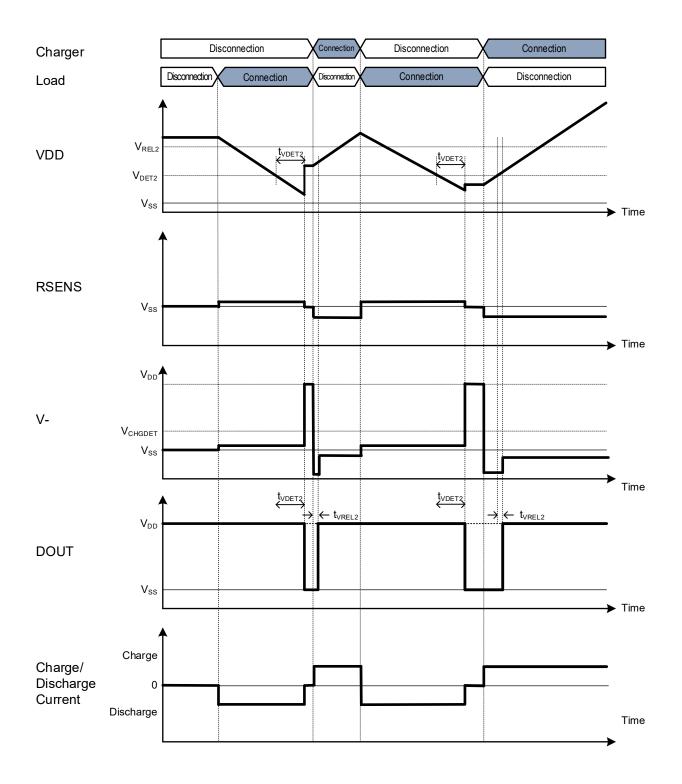
Note: The release operation by the RST pin is only for 1st step detection type.


Timing Chart

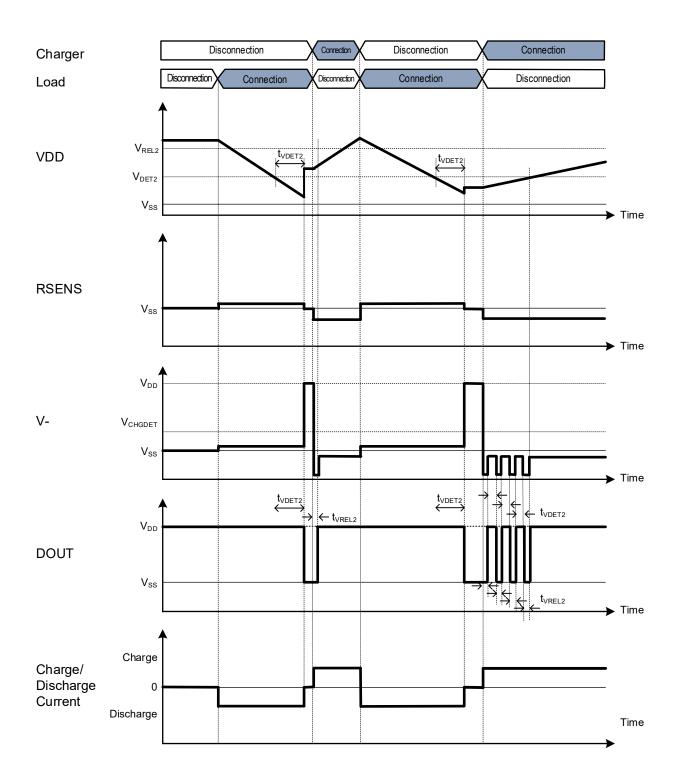
Overcharge (Auto Release) Timing Chart


NB7140ZA series

Overcharge (Latch) Timing Chart


Overdischarge

Overdischarge (Auto Release) Timing Chart

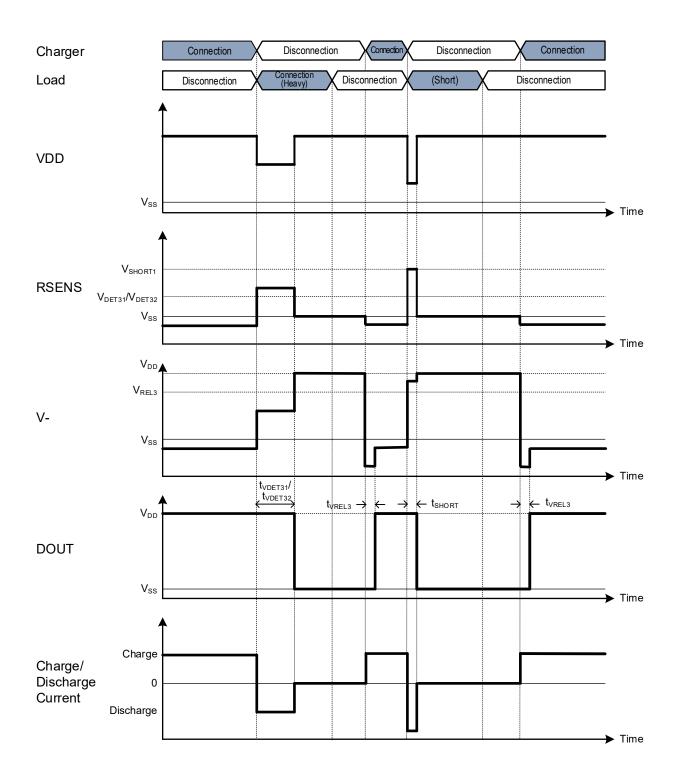

NB7140ZA series

Overdischarge (Latch 1) Timing Chart



NB7140ZA series

Overdischarge (Latch 2) Timing Chart



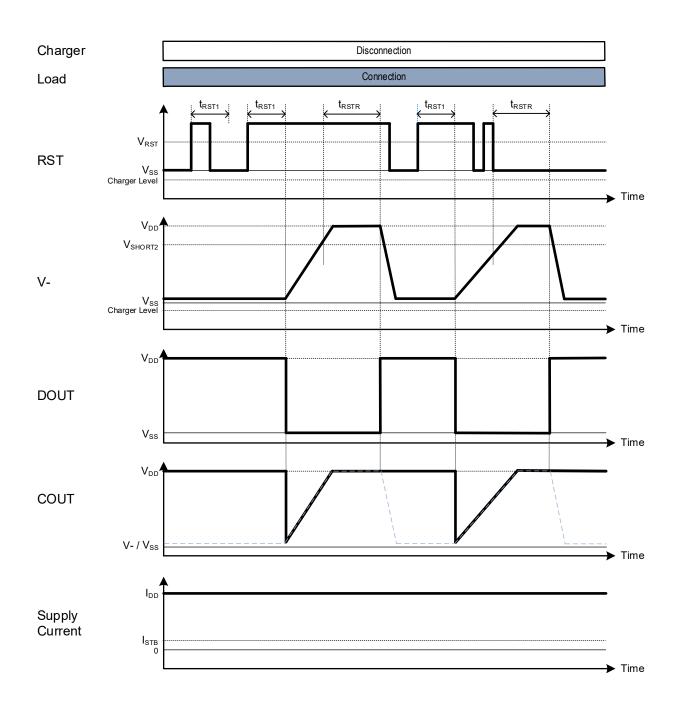
Discharge Overcurrent (Auto Release) Timing Chart

NB7140ZA series

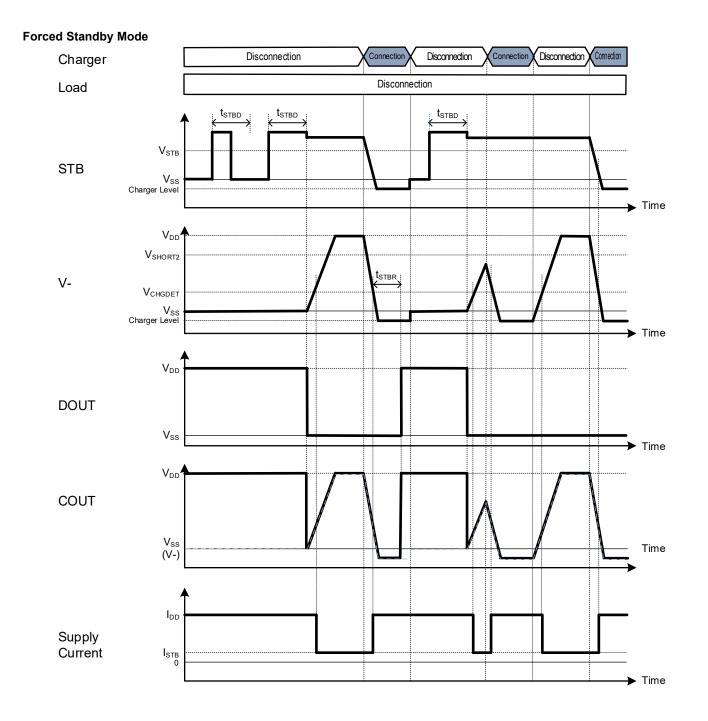
Discharge Overcurrent (Latch) Timing Chart

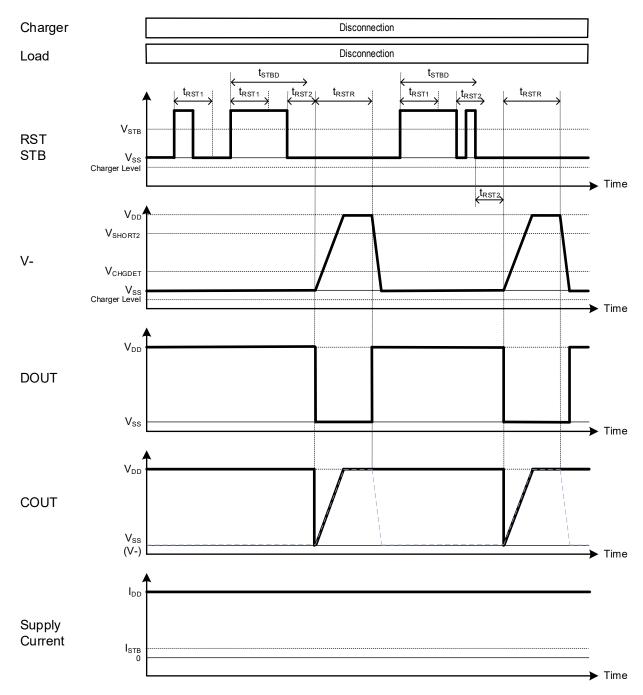


Charge Overcurrent Timing Chart

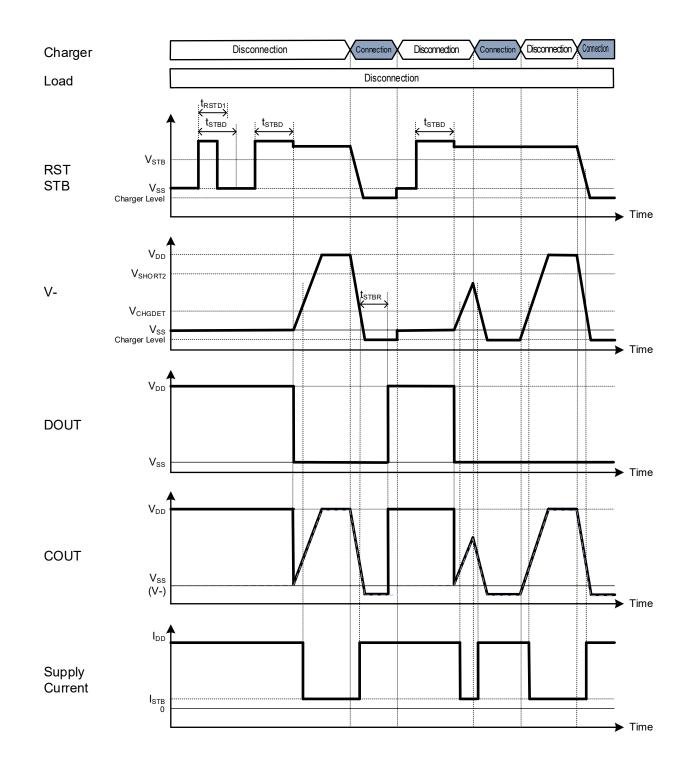


System Reset


System Reset (Reset Detection: 2nd step detection, Reset Release: Auto release) Timing Chart

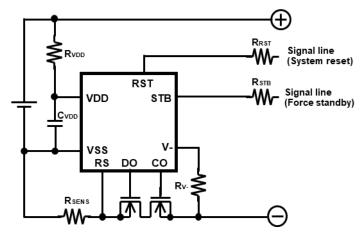

System Reset (Reset Detection: 1st step detection, Reset Release: V-rising) Timing Chart

Forced Standby Mode Timing Chart

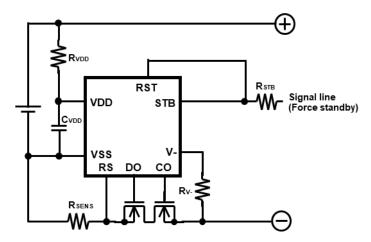


System Reset (In the case of connecting between the RST and the STB pins)

System Reset (Reset Detection: 2nd step detection, Reset Release: Auto release) Timing Chart



Forced Standby Mode (In the case of connecting between the RST and the STB pins)


Forced Standby Mode (Reset Detection: 2nd step detection, Reset Release: Auto release) Timing Chart

TYPICAL APPLICATION CIRCUITS

NB7140ZA (Reset Detection at 1st Step) Typical Application Circuit

NB7140ZA (Reset Detection at 2nd Step) Typical Application Circuit

External Components

Symbol	Min.	Тур.	Max.
Resistor			
Rvdd *1	-	330Ω	1kΩ
Rv- *1	-	1.0kΩ	1.3kΩ
Rsens	-	1.5mΩ	-
R _{STB} , R _{RST}	-	1.0kΩ	10kΩ
Capacitor			
CVDD	0.01µF	0.10µF	1.00µF

 *1 The total resistance of R_{VDD} and $R_{V\text{-}}$ must be $1k\Omega$ or more.

Technical Notes Related to External Components

- The voltage fluctuation is stabilized with R_{VDD} and C_{VDD}. If a R_{VDD} is too large, the detection voltage rises by the conduction current at detection. To stabilize the operation, it is recommended to use a resistor of 1kΩ or less for R_{VDD} and a capacitor of 0.01 µF to 1.00 µF for C_{VDD}.
- R_{VDD} and R_{V-} serve as a current limit resistor when the battery pack is charged with reversed polarity, or a voltage of the connected charger is more than the absolute maximum rating. When using a small resistor for R_{VDD} and R_{V-}, the device's power dissipation might be exceeded. Therefore, a total of R_{VDD} and R_{V-} must be 1kΩ or more. When using a large resistor for R_{V-}, the charger might not be released by re-connecting to the battery pack after the over-discharge detection. Therefore, R_{V-} must be 1.3kΩ or less. Production variation and temperature properties are included in the value. R_{SENS} is a resistor for sensing an overcurrent. If the resistance value is too large, power loss becomes also large. By the overcurrent, if the R_{SENS} is not appropriate, the power loss may be beyond the power dissipation of R_{SENS}. Choose an appropriate R_{SENS} according to the cell specification.
- The typical application circuit diagrams are just examples. This circuit performance largely depends on the PCB layout and external components. In the actual application, fully evaluation is necessary.
- If the positive terminal and the negative terminal of the battery pack are short even though the device has the short protection circuit, a large current may flow through the FET during the delay time until detecting the short circuit. Therefore, select an appropriate FET with large enough current capacitance to endure the large current during the delay time.

Selection of External Sense Resistor and MOSFET

The short mode is detected by the current base or the relation between V_{DD} at short and total on resistance of external MOSFETs for C_{OUT} and D_{OUT} . When a short circuit detection is required with the current determined by V_{SHORT1} , V_{SHORT2} , and R_{SENS} , the next formula must be true, otherwise, the short current limit becomes (V_{SHORT2}) / (R_{SENS} + R_{SS} (on)).

$$\frac{V_{SHORT2}}{R_{SENS} + Rss(on)} \ge \frac{V_{SHORT2}}{R_{SENS}}$$

$$\begin{split} &V_{\text{SHORT1}} = \text{Threshold value of detecting short circuit using R_{SENS} terminal [V]$ \\ &V_{\text{SHORT2}} = \text{Threshold value of detecting short circuit using V- terminal [V]$ \\ &R_{\text{SENS}} = \text{External current sense resistance } [\Omega]$ \\ &R_{\text{SS}}(\text{on}) = \text{external MOSFETs' total ON resistance } [\Omega]$ \end{split}$$

In the short mode, a short current is determined by the relation between R_{SENS} and V_{SHORT1} value.

TECHNICAL NOTES

A peripheral component or the device mounted on PCB should not exceed a rated voltage, a rated current or a rated power. When designing a peripheral circuit, please be fully aware of the following points.

- Please evaluate the product at the PCB level before use, as some symptoms may remain that cannot be confirmed by the evaluation at the IC level.
- When using any coating or underfill to improve moisture resistance or joining strength, evaluate them adequately before using. In certain materials or coating conditions, corrosion by contained constituents, current leakage by moisture absorption, crack and delamination by physical stress can happen. If the curing temperature of the coating material or underfill material exceeds the absolute maximum rating, the electrical characteristics of this product may change.
- When performing X-ray inspection in mass production process and evaluation build stage such as the product functions and characteristics confirmation, please confirm X-ray irradiation does not exceed 1.5Gy (absorbed dose for air).

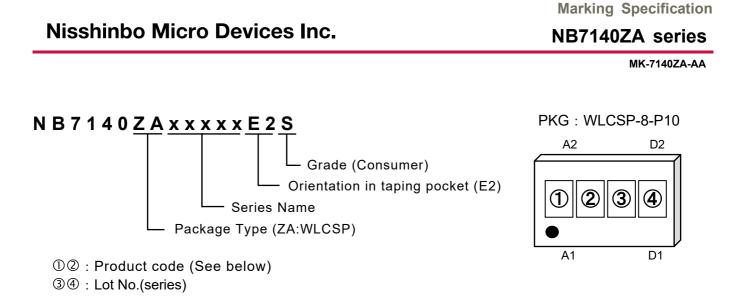
Datasheet

REVISION HISTORY

Date	Version	Changes
June 20, 2022	1.00	First public release
July 12, 2022	1.10	Corrected mistakes in writing.
August 1, 2022	1.20	Added Electrostatic Discharge (ESD) ratings. Corrected mistakes in writing.
September 22, 2022	1.30	Updated timing diagrams in the timing chart section.
November 7, 2022	1.40	Deleted marking information from ORDER INFORMATION and PKG INFORMATION and merge them as Marking Specification. Updated timing diagrams in the timing chart section.

		Set Voltage [V] / Delay Time [ms]															Optional Function						
	Vaeri / tore	Vaert VRELI/ Auger	Voer2/ fure-	VRE12/4-	VDET31/ fam.	VbET32 / tw	-06132	^{4,4} 2.3 Voeta / t _{oeta}		VREL4 VSHORT / Evic	Unort V	VSTBD / F.	to BD	V _{RSTD} /F	trong	thest be		Unit Overcharge	Release Overdischarge	Discharge Overcurrent	Dischrage Overcurrent	0 V Battery Cho	vilarging *3
NB7140ZA 102DE E2S	4.450	-	3.100	-	0.0120	-	-	-0.0120	-	0.040	1.10	0.65	-	0.65	-	-	V	Latch	Latch1	Latch	No	No	
	1024	16.0	128	1.05	1024	-	9.0	10.0	4.0	0.28	-	50	4.5	48	-	200	ms						
NB7140ZA 103DE E2S	4.450	-	3.100	-	0.0120	-	-	-0.0120	-	0.040	2.20	0.65	-	0.65	-	-	V	Latch	Latch1	Latch	No	No	
	1024	16.0	128	1.05	1024	-	9.0	10.0	4.0	0.28	-	50	4.5	48	-	200	ms	201011					
NB7140ZA 102DJ E2S	4.450	-	3.100	-	0.0120	-	-	-0.0120	-	0.040	1.10	0.65	-	0.65	-	-	V	Latch	Latch1	Auto1	No	No	
	1024	16.0	128	1.05	1024	-	9.0	10.0	4.0	0.28	-	50	4.5	48	-	200	ms	201011		7 1010 1	NU		
NB7140ZA 105FK E2S	4.200	-	3.200	-	0.0200	-	-	-0.0500	-	0.030	-	0.65	-	0.65	-	-	V	Latch	Latch1	Auto1	No	Yes	
NBI 1402/11001 NEED	1024	16.0	32	1.05	12.5	-	9.0	10.0	4.0	0.28	-	50	8.5	100	-	200	ms	Euton	Euton	710101	NO	100	
NB7140ZA 106GQ E2S	4.700	4.300	2.100	2.800	0.0050	-	-	-0.0050	-	0.200	2.00	0.65	-	0.65	-	-	V	Auto	Auto	Auto1	No	No	
NB/ 1402/ 1000 QL20	1024	16.0	128	1.05	16.5	-	9.0	17.0	4.0	0.28	-	300	33	100	-	512	ms	nato	Auto	710101	NO		
NB7140ZA 101AF E2S	4.250	-	2.900	-	0.0300	0.0450	-	-0.0150	-	0.055	2.50	0.80	-	0.80	-	-	۷	Latch	Latch2	Latch	Yes	No	
	1024	16.0	64	1.05	1024	16.5	9.0	17.0	4.0	0.28	-	300	33	48	4.5	512	ms	Latch I	Latch2	Laton	103		
NB7140ZA 104AF E2S	4.250	-	2.900	-	0.0450	0.0600	•	-0.0220	-	0.070	2.50	0.80	-	0.80	-	-	V	Latch	Latch2	Latch	Yes	No	
ND/ 1402A 104AFE23	1024	16.0	64	1.05	1024	16.5	9.0	17.0	4.0	0.28	-	300	33	48	4.5	512	ms	Laton	LaiCHZ	Laton	162	NU	

^{*1} Overdischarge Release Conditions,

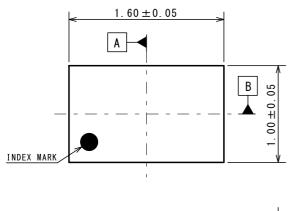

Auto (Auto Release): Cell voltage > V_{REL2}

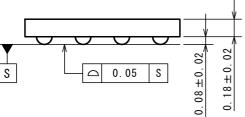
Latch 1: Cell voltage > V_{DET2} under charger connection

Latch 2: Charger connection

*2 Yes: Available No: Unavailable

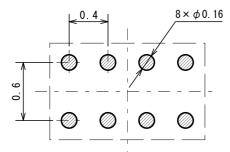
*3 Yes : Permission No: Inhibition

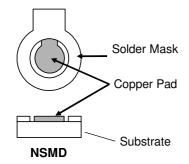

NOTICE


There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or distributor before attempting to use AOI.

Product Name	12
NB7140ZA102DE	ТО
NB7140ZA103DE	Т 1
NB7140ZA102DJ	Т 2
NB7140ZA105FK	Т 3
NB7140ZA106GQ	Т4
NB7140ZA101AF	Т5
NB7140ZA104AF	Т6

WLCSP-8-P10


■ PACKAGE DIMENSIONS



0.40 (0.20) ᠿ \bigcirc \cap \bigcirc 2 60 0 1 (0. 20) D С В Α 1 $\phi 0.16 \pm 0.03$ φ0.05 (M) S AB

■ EXAMPLE OF SOLDER PADS DIMENSIONS

Recommended Land Pattern

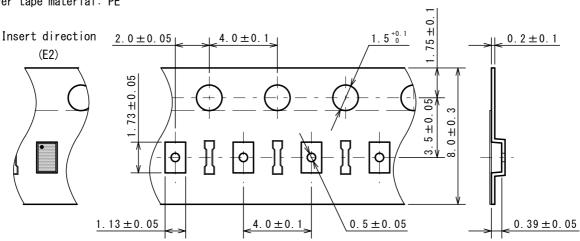
NSMD Pad Definition		
Pad definition	Copper Pad	Solder Mask Opening
NSMD (Non-Solder Mask defined)	0.16mm	MIN. 0.26mm

*) Pad Layout and size can modify by customers material, equipment and method.

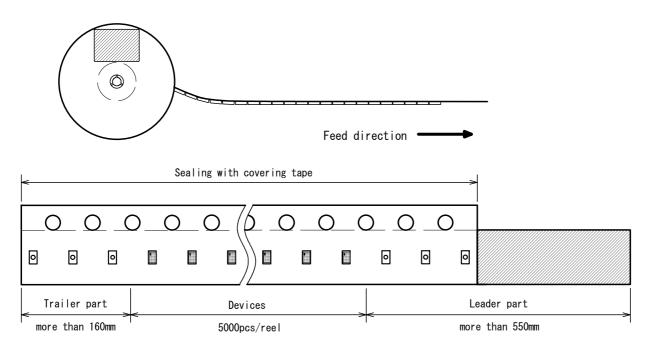
*) Please adjust pad layout according to your conditions.

*) Recommended Stencil Aperture Size: ϕ 0.26mm

PI-WLCSP-8-P10-E-B


UNIT: mm

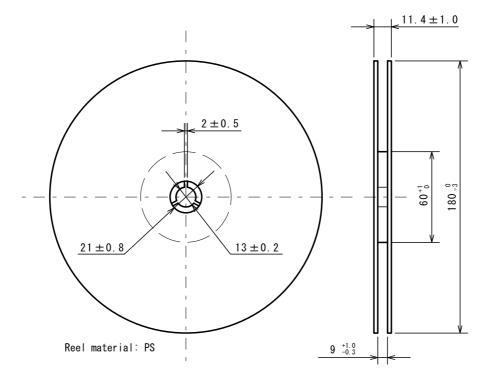
WLCSP-8-P10


PACKING SPEC

(1) Taping dimensions / Insert direction

Carrier tape material: PC Cover tape material: PE

(2) Taping state



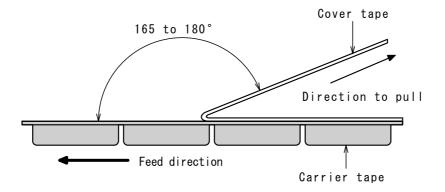
PI-WLCSP-8-P10-E-B

UNIT: mm

WLCSP-8-P10

(3) Reel dimensions

(4) Peeling strength


Peeling strength of cover tape

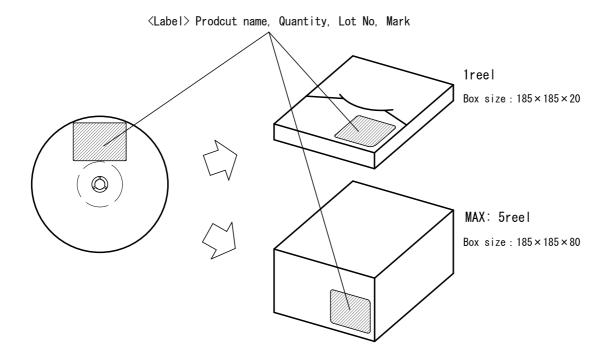
•Peeling angle

Peeling speed

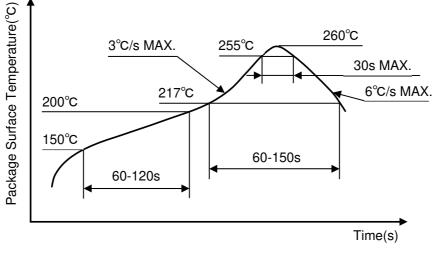
Peeling strength

165 to 180° degrees to the taped surface. 300mm/min 0.1 to 1.0N

NSSHNBO


PI-WLCSP-8-P10-E-B

PI-WLCSP-8-P10-E-B


Nisshinbo Micro Devices Inc.

WLCSP-8-P10

(5) Packing state

HEAT-RESISTANCE PROFILES

Reflow profile

WLCSP Packages

VI-WLCSP-220729

Visual Inspection Criteria

No.	Inspection Items	Inspection Criteria	Figures
2	Package chipping Si surface chipping	$\label{eq:constraint} \begin{array}{l} A \geq 0.2mm \text{ is rejected} \\ B \geq 0.2mm \text{ is rejected} \\ C \geq 0.2mm \text{ is rejected} \\ \text{And, Package chipping to Si surface and to bump} \\ \text{ is rejected.} \\ A \geq 0.2mm \text{ is rejected} \\ B \geq 0.2mm \text{ is rejected} \\ C \geq 0.2mm \text{ is rejected} \\ \text{But, even if } A \geq 0.2mm, B \leq 0.1mm \text{ is acceptable.} \end{array}$	
3	No bump	No bump is rejected.	
4	Marking miss	To reject incorrect marking, such as another	
4		product name marking or another lot No. marking.	
5	No marking	To reject no marking on the package.	
6	Reverse direction of marking	To reject reverse direction of marking character.	
7	Defective marking	To reject unreadable marking. (Microscope: X15/ White LED/ Viewed from vertical direction)	
8	Scratch	To reject unreadable marking character by scratch. (Microscope: X15/ White LED/ Viewed from vertical direction)	
9	Stain and Foreign material	To reject unreadable marking character by stain and foreign material. (Microscope: X15/ White LED/ Viewed from vertical direction)	

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without the prior written consent of us.
- 3. This product and any technical information relating thereto are subject to complementary export controls (so-called KNOW controls) under the Foreign Exchange and Foreign Trade Law, and related politics ministerial ordinance of the law. (Note that the complementary export controls are inapplicable to any application-specific products, except rockets and pilotless aircraft, that are insusceptible to design or program changes.) Accordingly, when exporting or carrying abroad this product, follow the Foreign Exchange and Foreign Trade Control Law and its related regulations with respect to the complementary export controls.
- 4. The technical information described in this document shows typical characteristics and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death should first contact us.
 - Aerospace Equipment
 - Equipment Used in the Deep Sea
 - Power Generator Control Equipment (nuclear, steam, hydraulic, etc.)
 - Life Maintenance Medical Equipment
 - Fire Alarms / Intruder Detectors
 - Vehicle Control Equipment (automotive, airplane, railroad, ship, etc.)
 - Various Safety Devices
 - Traffic control system
 - Combustion equipment

In case your company desires to use this product for any applications other than general electronic equipment mentioned above, make sure to contact our company in advance. Note that the important requirements mentioned in this section are not applicable to cases where operation requirements such as application conditions are confirmed by our company in writing after consultation with your company.

- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. The products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. We shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products.
- 8. Quality Warranty
 - 8-1. Quality Warranty Period

In the case of a product purchased through an authorized distributor or directly from us, the warranty period for this product shall be one (1) year after delivery to your company. For defective products that occurred during this period, we will take the quality warranty measures described in section 8-2. However, if there is an agreement on the warranty period in the basic transaction agreement, quality assurance agreement, delivery specifications, etc., it shall be followed.

8-2. Quality Warranty Remedies

When it has been proved defective due to manufacturing factors as a result of defect analysis by us, we will either deliver a substitute for the defective product or refund the purchase price of the defective product.

- Note that such delivery or refund is sole and exclusive remedies to your company for the defective product.
- 8-3. Remedies after Quality Warranty Period

With respect to any defect of this product found after the quality warranty period, the defect will be analyzed by us. On the basis of the defect analysis results, the scope and amounts of damage shall be determined by mutual agreement of both parties. Then we will deal with upper limit in Section 8-2. This provision is not intended to limit any legal rights of your company.

- 9. Anti-radiation design is not implemented in the products described in this document.
- 10. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 11. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 12. Warning for handling Gallium and Arsenic (GaAs) products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste.
- 13. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.

Nisshinbo Micro Devices Inc.

Official website https://www.nisshinbo-microdevices.co.jp/en/ Purchase information https://www.nisshinbo-microdevices.co.jp/en/buy/