

Application Manual

RV-3032-C7

Application Manual

RV-3032-C7

DTCXO Temp. Compensated Real-Time Clock Module with I²C-Bus Interface

TABLE OF CONTENTS

1.	OV	ERVIEW	7
	1.1.	GENERAL DESCRIPTION	8
	1.2.	APPLICATIONS	8
	1.3.	ORDERING INFORMATION	8
2.	BLO	DCK DIAGRAM	9
	2.1.	PINOUT	10
	2.2.	PIN DESCRIPTION	. 10
	2.3.	FUNCTIONAL DESCRIPTION	. 11
	2.4.	DEVICE PROTECTION DIAGRAM	. 12
3.	RE	GISTER ORGANIZATION	13
	3.1.	REGISTER CONVENTIONS	13
	3.2.	REGISTER OVERVIEW	.14
	3.3.	CLOCK REGISTERS	.17
	3.4.	CALENDAR REGISTERS	. 18
	3.5.	ALARM REGISTERS	20
	3.6.	PERIODIC COUNTDOWN TIMER CONTROL REGISTERS	21
	3.7.	STATUS REGISTER	22
	3.8.	TEMPERATURE REGISTERS	23
	3.9.	CONTROL REGISTERS	25
	3.10	TIME STAMP CONTROL REGISTER	28
	3.11	CLOCK INTERRUPT MASK REGISTER	29
	3.12	EVI CONTROL REGISTER	30
	3.13	TEMPERATURE THRESHOLDS REGISTERS	.31
	3.14	TIME STAMP TLOW REGISTERS	32
	3.15	TIME STAMP THIGH REGISTERS	35
	3.16	TIME STAMP EVI REGISTERS	. 38
	3.17	PASSWORD REGISTERS	42
	3.18	EEPROM MEMORY CONTROL REGISTERS	43
	3.19	RAM REGISTERS	44
	3.20	CONFIGURATION EEPROM WITH RAM MIRROR REGISTERS	45
	3.	20.1. EEPROM PMU REGISTER	45
	3.	20.2. EEPROM OFFSET REGISTER	46
	3.	20.3. EEPROM CLKOUT REGISTERS	47
	3.	20.4. EEPROM TEMPERATURE REFERENCE REGISTERS	49
	3.	20.5. EEPROM PASSWORD REGISTERS	50
	3.	20.6. EEPROM PASSWORD ENABLE REGISTER	51
	3.21	USER EEPROM	51
	3.22	REGISTER RESET VALUES SUMMARY	52

4.

DTCXO Temp. Compensated Real-Time Clock Module

	ED FUNCTIONAL DESCRIPTION	
4.1. PO	WER ON RESET (POR)	57
4.2. AU	TOMATIC BACKUP SWITCHOVER FUNCTION	58
	SWITCHOVER DISABLED	
4.2.2.	DIRECT SWITCHING MODE (DSM)	59
4.2.3.	LEVEL SWITCHING MODE (LSM)	60
4.3. TRI	CKLE CHARGER WITH CHARGE PUMP	61
4.4. PR	OGRAMMABLE CLOCK OUTPUT	61
4.4.1.	XTAL CLKOUT FREQUENCY SELECTION	62
4.4.2.	HF CLKOUT FREQUENCY SELECTION	62
4.4.3.	CLKOUT FREQUENCY TRANSITIONS	63
4.4.4.	NORMAL CLOCK OUTPUT	63
4.4.5.	INTERRUPT CONTROLLED CLOCK OUTPUT	63
4.4.6.	INTERRUPT DELAY AFTER CLKOUT ON	64
4.4.7.	CLKOUT OFF DELAY AFTER I2C STOP	64
4.4.8.	CLOCK OUTPUT SCHEME	65
4.5. SE	TTING AND READING THE TIME	66
4.5.1.	SETTING THE TIME	67
4.5.2.	READING THE TIME	67
4.6. EEI	PROM READ/WRITE	68
4.6.1.	POR REFRESH (ALL CONFIGURATION EEPROM \rightarrow RAM)	68
4.6.2.	AUTOMATIC REFRESH (ALL CONFIGURATION EEPROM \rightarrow RAM)	68
4.6.3.	UPDATE (ALL CONFIGURATION RAM → EEPROM)	68
4.6.4.	REFRESH (ALL CONFIGURATION EEPROM \rightarrow RAM)	68
4.6.5.	WRITE TO ONE EEPROM BYTE (EEDATA (RAM) → EEPROM)	69
4.6.6.	READ ONE EEPROM BYTE (EEPROM → EEDATA (RAM))	69
4.6.7.	EEBUSY BIT	70
4.6.8.	EEF FLAG	71
4.6.9.	EEPROM READ/WRITE CONDITIONS	71
4.6.10	USE OF THE CONFIGURATION REGISTERS	72
4.7. INT	ERRUPT OUTPUT	73
4.7.1.	SERVICING INTERRUPTS	73
4.7.2.	INTERRUPT SCHEME	74
4.8. PEI	RIODIC COUNTDOWN TIMER INTERRUPT FUNCTION	77
4.8.1.	PERIODIC COUNTDOWN TIMER DIAGRAM	77
4.8.2.	USE OF THE PERIODIC COUNTDOWN TIMER INTERRUPT	78
4.8.3.	FIRST PERIOD DURATION	80
4.9. PEI	RIODIC TIME UPDATE INTERRUPT FUNCTION	81
4.9.1.	PERIODIC TIME UPDATE DIAGRAM	

August 2020

RV-3032-C7

4.9.2. USE OF THE PERIODIC TIME UPDATE INTERRUPT	
4.10. ALARM INTERRUPT FUNCTION	83
4.10.1. ALARM DIAGRAM	
4.10.2. USE OF THE ALARM INTERRUPT	
4.11. EXTERNAL EVENT INTERRUPT FUNCTION	85
4.11.1. EXTERNAL EVENT DIAGRAM	
4.11.2. USE OF THE EXTERNAL EVENT INTERRUPT	
4.11.3. EDGE DETECTION (ET = 00)	
4.11.4. LEVEL DETECTION WITH FILTERING (ET ≠ 00)	
4.12. TEMPERATURE LOW INTERRUPT FUNCTION	89
4.12.1. TEMPERATURE LOW DIAGRAM	
4.12.2. USE OF THE TEMPERATURE LOW INTERRUPT	91
4.13. TEMPERATURE HIGH INTERRUPT FUNCTION	
4.13.1. TEMPERATURE HIGH DIAGRAM	
4.13.2. USE OF THE TEMPERATURE HIGH INTERRUPT	
4.14. AUTOMATIC BACKUP SWITCHOVER INTERRUPT FUNCTION	
4.14.1. AUTOMATIC BACKUP SWITCHOVER DIAGRAM	
4.14.2. USE OF THE AUTOMATIC BACKUP SWITCHOVER INTERRUPT	
4.15. POWER ON RESET INTERRUPT FUNCTION	
4.15.1. POWER ON RESET DIAGRAM	
4.15.2. USE OF THE POWER ON RESET INTERRUPT	
4.16. VOLTAGE LOW INTERRUPT FUNCTION	
4.16.1. VOLTAGE LOW DIAGRAM	
4.16.2. USE OF THE VOLTAGE LOW INTERRUPT	100
4.17. TIME STAMP EVI FUNCTION	101
4.17.1. TIME STAMP EVI SCHEME	102
4.18. TIME STAMP TLOW FUNCTION	103
4.18.1. TIME STAMP TLOW SCHEME	104
4.19. TIME STAMP THIGH FUNCTION	105
4.19.1. TIME STAMP THIGH SCHEME	106
4.20. TEMPERATURE REFERENCE ADJUSTMENT	107
4.20.1. TREF VALUE DETERMINATION	107
4.21. TIME SYNCHRONIZATION	109
4.21.1. STOP BIT FUNCTION	109
4.21.2. WRITING TO SECONDS REGISTER	111
4.21.3. ESYN BIT FUNCTION	112
4.22. USER PROGRAMMABLE PASSWORD	114
4.22.1. ENABLE/DISABLE WRITE PROTECTION	114
4.22.2. CHANGING PASSWORD	

	4.22.3. FLOWCHART	116
5.	TEMPERATURE COMPENSATION	-
-	5.1. XTAL MODE FREQUENCIES	117
	5.2. COMPENSATION VALUES	117
	5.3. AGING CORRECTION	
	5.3.1. OFFSET VALUE DETERMINATION	118
	5.3.2. MEASURING TIME ACCURACY AT CLKOUT PIN	119
	5.4. CLOCKING SCHEME	120
6.	I ² C INTERFACE	121
	6.1. BIT TRANSFER	121
	6.2. START AND STOP CONDITIONS	121
	6.3. DATA VALID	122
	6.4. SYSTEM CONFIGURATION	122
	6.5. ACKNOWLEDGE	123
	6.6. SLAVE ADDRESS	124
	6.7. WRITE OPERATION	124
	6.8. READ OPERATION AT SPECIFIC ADDRESS	125
	6.9. READ OPERATION	125
	6.10. PC-BUS IN SWITCHOVER CONDITION	126
7.	ELECTRICAL SPECIFICATIONS	127
	7.1. ABSOLUTE MAXIMUM RATINGS	127
	7.2. OPERATING PARAMETERS	128
	7.2.1. TEMPERATURE COMPENSATION AND CURRENT CONSUMPTION	130
	7.2.2. TYPICAL CHARACTERISTICS	131
	7.3. XTAL OSCILLATOR PARAMETERS	132
	7.3.1. TIME ACCURACY VS. TEMPERATURE CHARACTERISTICS	133
	7.3.2. TIME ACCURACY 1 HZ EXAMPLE	133
	7.3.3. TEMPERATURE SENSOR ACCURACY EXAMPLE	134
	7.4. POWER ON AC ELECTRICAL CHARACTERISTICS	135
	7.5. BACKUP AND RECOVERY AC ELECTRICAL CHARACTERISTICS	136
	7.6. PC-BUS CHARACTERISTICS	137
8.	. TYPICAL APPLICATION CIRCUIT	138
	8.1. OPERATING RV-3032-C7 WITH BACKUP SUPPLY VOLTAGE	
	8.1.1. OPERATING RV-3032-C7 WITH CERACHARGE™ BACKUP BATTERY	139
	PACKAGE	
	9.1. DIMENSIONS AND SOLDER PAD LAYOUT	140
	9.1.1. RECOMMENDED THERMAL RELIEF	140
	9.2. MARKING AND PIN #1 INDEX	141
10	0. MATERIAL COMPOSITION DECLARATION & ENVIRONMENTAL INFORMATION	142

10.1. HOMOGENOUS MATERIAL COMPOSITION DECLARATION	142
10.2. MATERIAL ANALYSIS & TEST RESULTS	143
10.3. RECYCLING MATERIAL INFORMATION	144
10.4. ENVIRONMENTAL PROPERTIES & ABSOLUTE MAXIMUM RATINGS	145
11. SOLDERING INFORMATION	146
12. HANDLING PRECAUTIONS FOR MODULES WITH EMBEDDED CRYSTALS	147
13. PACKING & SHIPPING INFORMATION	148
14. COMPLIANCE INFORMATION	149
15. DOCUMENT REVISION HISTORY	

RV-3032-C7

DTCXO Temp. Compensated Real-Time Clock (RTC) Module with I²C-Bus Interface

1. OVERVIEW

- RTC module with built-in 32.768 kHz "Tuning Fork" crystal oscillator and HF oscillator
- Counters for hundredths of seconds, seconds, minutes, hours, date, month, year and weekday
- Factory calibrated temperature compensation
- Very high Time Accuracy
 - ±1.5 ppm 0 to +50°C
 - ±3.0 ppm -40 to +85°C
 - Aging compensation with user programmable EEPROM Offset value (default value on delivery = 0)
- Automatic leap year correction: 2000 to 2099
- Periodic Countdown Timer Interrupt function; interrupt output also in VBACKUP Power state
- Periodic Time Update Interrupt function (seconds, minutes); interrupt output also in VBACKUP Power state
- Alarm Interrupts for date, hour and minute settings; interrupt output also in VBACKUP Power state
- External Event Input with Interrupt and Time Stamp function; interrupt output also in VBACKUP Power state
- 16 Bytes of User RAM
- 32 Bytes of User EEPROM
- Configuration registers stored in EEPROM and mirrored in RAM
- User programmable password for write protection of the time, control and configuration registers
- I²C-bus interface (up to 400 kHz)
- Programmable Clock Output for peripheral devices
 - Not-Enable/Enable by NCLKE bit (synchronized enable/disable)
 - Enable by an Interrupt function
 - o XTAL mode: 32.768 kHz, 1024 Hz, 64 Hz, 1 Hz
 - HF mode: 8192 Hz to 67.109 MHz in 8192 Hz steps
 - Selectable Interrupt Delay after CLKOUT on (for waking up the MCU)
 - Selectable CLKOUT switch off delay after I²C STOP (for sleep mode command from the MCU)
 - Synchronized enable/disable (with NCLKE or CLKF)
 - Synchronized oscillator change (with bit OS)
- Automatic Backup switchover with Interrupt function
- Internal Power On Reset (POR) with Interrupt function
- Voltage Low Interrupt function: $V_{LOW} = 1.2 \text{ V}$
- Digital Thermometer
 - ° ±3°C -40 to +85°C
 - Readable real internal temperature in °C (12-bit resolution with 0.0625°C/step)
 - Temperature value adjustment with user programmable EEPROM TReference value TREF (Factory Calibrated value may be changed by the user)
- Temperature Low- and Temperature High Interrupt and Time Stamp functions with programmable temperature threshold values; interrupt output also in VBACKUP Power state
- Trickle charger with Charge Pump, which permits loading of VBACK > VDD
- Wide Timekeeping voltage range: 1.2 to 5.5 V (including temperature sensing and compensation)
- Wide interface operating voltage: 1.4 to 5.5 V
- Very low current consumption: 160 nA (V_{DD} = 3.0 V, TA = 25°C)
- Operating temperature range: -40 to +85°C
- Ultra small and compact C7 package size (3.2 x 1.5 x 0.8 mm), RoHS-compliant and 100% lead-free
- Automotive qualification according to AEC-Q200 available

1.1. GENERAL DESCRIPTION

The RV-3032-C7 is a highly accurate real-time clock/calendar module due to its built-in Thermometer and Digital Temperature Compensation circuitry (DTCXO). The Temperature Compensation circuitry is factory calibrated and results in highest time accuracy of ± 3.0 ppm over the entire temperature range from -40 to $\pm 85^{\circ}$ C, and additionally offers a non-volatile aging offset correction. The RV-3032-C7 has the smallest package and the lowest current consumption among all temperature compensated RTC modules. Due to its special architecture the RV-3032-C7 provides a very low current consumption of 160 nA.

The RV-3032-C7 CMOS real-time clock/calendar module includes an automatic backup switchover circuit with trickle charger with charge pump and provides full RTC function with programmable counters, alarm, selectable interrupt and clock output functions for frequencies from 1 Hz to 67 MHz. The internal EEPROM memory hosts all configuration settings and allows for additional user memory. Addresses and data are transmitted via an I²C-bus interface for communication with a host controller. The Address Pointer is incremented automatically after each written or read data byte.

1.2. APPLICATIONS

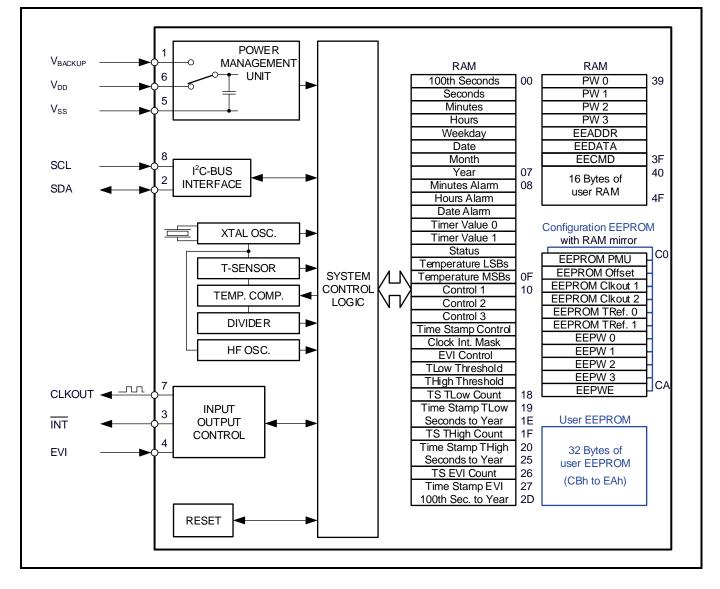
The RV-3032-C7 RTC module combines key functions with outstanding performance in an ultra-small ceramic package:

- Factory calibrated Temperature Compensation with temperature measuring every second
- Ultra-Low Power consumption
- Smallest RTC module (embedded XTAL) in an ultra-small 3.2 x 1.5 x 0.8 mm lead-free ceramic package

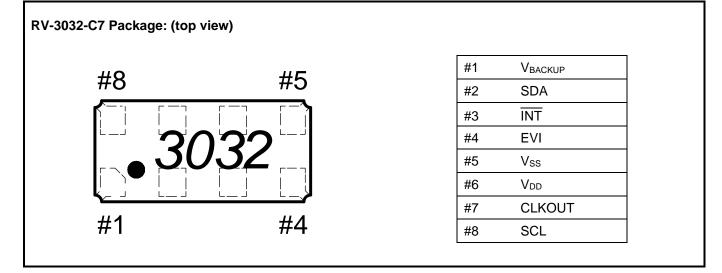
These unique features make this product perfectly suitable for many applications:

- Communication: IoT / Wearables / Wireless Sensors and Tags / Handsets
- Automotive: M2M / Navigation & Tracking Systems / Dashboard / Tachometers / Engine Controller Car Audio & Entertainment Systems
- Metering: E-Meter / Heating Counter / Smart Meters / PV Converter / Utility metering
- Outdoor: ATM & POS systems / Surveillance & Safety systems / Ticketing Systems
- Medical: Glucose Meter / Health Monitoring Systems
- Safety: Security & Camera Systems / Door Lock & Access Control / Tamper Detection
- Consumer: Gambling Machines / TV & Set Top Boxes / White Goods
- Automation: PLC / Data Logger / Home & Factory Automation / Industrial and Consumer Electronics

1.3. ORDERING INFORMATION


Example: RV-3032-C7 TA QC

Code	Operating temperature range
TA (Standard)	-40 to +85°C


Code	Qualification
QC (Standard)	Commercial Grade
QA	Automotive Grade AEC-Q200

RV-3032-C7

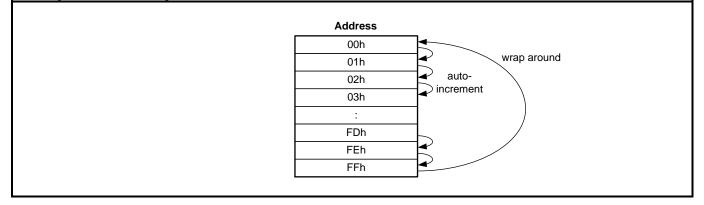
2. BLOCK DIAGRAM

2.1. PINOUT

2.2. PIN DESCRIPTION

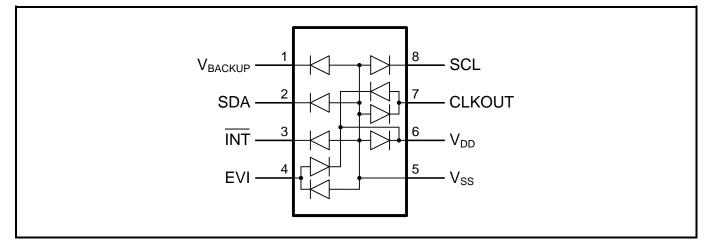
Symbol	Pin #	Description
VBACKUP	1	Backup Supply Voltage. When the backup switchover function is not needed, V_{BACKUP} must be tied to V_{SS} with a 10 k Ω resistor.
SDA	2	I ² C Serial Data Input-Output; open-drain; requires pull-up resistor. In VBACKUP Power state, the SDA pin is disabled (high impedance).
ĪNT	3	Interrupt Output; open-drain; active LOW; requires pull-up resistor; used to output Periodic Countdown Timer, Periodic Time Update, Alarm, Temperature Low, Temperature High, External Event, Voltage Low, Automatic Backup Switchover and Power On Reset Interrupt signals. Interrupt output also in VBACKUP Power state.
EVI	4	External Event Input; used for interrupt generation, interrupt driven clock output and time stamp function. Remains active also in VBACKUP Power state. This pin should not be left floating.
V _{SS}	5	Ground.
V _{DD}	6	Power Supply Voltage.
CLKOUT	7	 Clock Output; push-pull; Normal and Interrupt driven clock output can be activated concurrently. Normal clock output is controlled by the NCLKE bit (EEPROM COh). When NCLKE is set to 0 (default), the square wave output is enabled on the CLKOUT pin. When NCLKE bit is set to 1, the CLKOUT pin is LOW, if not enabled by the interrupt driven clock output. Interrupt driven clock output is controlled by an interrupt event. When CLKIE bit (11h) is set to 1 the occurrence of the interrupt selected in the Clock Interrupt Mask Register (14h) allows the square wave output on the CLKOUT pin (for waking up the MCU). Writing 0 to CLKIE will disable new interrupts from driving square wave on CLKOUT. When CLKF flag is cleared, the CLKOUT pin is LOW. An Interrupt Delay after CLKOUT on can be enabled with bit INTDE (14h) (for waking up the MCU). A CLKOUT switch off delay after I²C STOP can be selected and enabled by bits CLKD and CLKDE (registers 14h and 15h) (for sleep mode command from the MCU). When OS bit is set to 0 (EEPROM C3h) and depending of the settings in the FD field (EEPROM C3h) the CLKOUT pin can drive the square wave of 32.768 kHz, 1024 Hz, 64 Hz or 1 Hz. When OS bit is set to 1 (EEPROM C3h) and depending of the settings in the HFD field (EEPROM C3h) and C2h and C3h) the CLKOUT pin can drive the square wave of a frequency between 8192 Hz to 67.109 MHz in 8192 Hz steps. In VBACKUP Power state, the CLKOUT pin is LOW.
SCL	8	I ² C Serial Clock Input; requires pull-up resistor. In VBACKUP Power state, the SCL pin is disabled.

2.3. FUNCTIONAL DESCRIPTION


The RV-3032-C7 is a high accurate, ultra-low power CMOS based Real-Time-Clock Module with embedded 32.768 kHz Crystal and with a HF oscillator. The Xtal 32.768 kHz clock itself and the frequencies from the HF oscillator are not temperature compensated. The very high Time Accuracy and stability of \pm 3.0 ppm over the entire temperature range from -40°C to +85°C is achieved by the built-in Digital Temperature Compensation circuitry (DTCXO). The factory calibrated correction values are located in the EEPROM and are not accessible for the user. Additionally, there is an EEPROM Offset Register customer use for aging correction.

The RV-3032-C7 includes an Automatic Backup switchover function with a Trickle Charger with Charge Pump where the interrupt output pin $\overline{\text{INT}}$ is also working in VBACKUP Power state. The clock output on CLKOUT pin can be enabled normally via command over I²C interface or can be interrupt driven. The configuration registers are stored permanently in EEPROM and mirrored in RAM in order that the RTC module is still configured correctly even after power down. For safety against inadvertent overwriting, the time, control and configuration registers can be protected by a User Programmable Password.

The RV-3032-C7 provides standard Clock & Calendar function including 100th seconds, seconds, minutes, hours (24 hour mode), weekdays, date, months, years (with leap year correction) and interrupt functions for the Periodic Countdown Timer, Periodic Time Update, Alarm, Temperature Low, Temperature High, External Event, Voltage Low, Automatic Backup Switchover and Power On Reset Interrupt signals. All registers are accessible via I²C-bus (2-wire Interface).


Beside the standard RTC functions, it includes an integrated Temperature Sensor with a readable Temperature Value in °C with adjustable Temperature Reference and Time Stamp functions for the External Event Input, Temperature Low and Temperature High. The Interrupt and Time Stamp functions are also working in VBACKUP Power state. The module also provides 16 Bytes of User RAM and 32 Bytes of User Memory EEPROM. Another RAM Byte can be used as User RAM when the Alarm function is not needed (Minutes Alarm, register 08h), another Byte if the Periodic Countdown Timer is not used (Timer Value 0, register 08h) and 2 further Bytes when the Temperature Thresholds are not needed (Thresholds TLT and THT, registers 16h and 17h).

The RAM registers are accessed by selecting a register address and then performing read or write operations. Multiple reads or writes may be executed in a single access, with the address automatically incrementing after each byte. When address is automatically incremented, wrap around occurs from address FFh to address 00h (see figure below). All registers are designed as addressable 8-bit registers despite the fact that not all registers and bits are implemented.

Handling RAM address registers:

2.4. DEVICE PROTECTION DIAGRAM

3. REGISTER ORGANIZATION

- RAM Registers at addresses 00h to 4Fh are accessed by selecting a register address and then performing read or write operations. Multiple reads or writes may be executed in a single access, with the address automatically incrementing after each byte.
- The Configuration Registers at addresses C0h to CAh are memorized in EEPROM and mirrored in RAM. For the RAM mirror, multiple reads or writes may be executed in a single access, with the address automatically incrementing after each byte.
- There are 32 Bytes of non-volatile user memory EEPROM at addresses CBh to EAh for general use.

The tables in section REGISTER OVERVIEW summarize the function of each register.

3.1. REGISTER CONVENTIONS

The conventions in this table serve as a key for the register overview and individual register diagrams:

Convention (Conv.)	Description							
R	R Read only. Writing to this register has no effect.							
W	W Write only. Returns 0 when read.							
R/WP Read: Always readable. Write: Can be write-protected by password.								
WP	WP Write only. Returns 0 when read. Can be write-protected by password.							
*WP	*WP EEPW registers: RAM mirror is Write only. Returns 0 when read. EEPROM can be READ when Unlocked.							
Prot.	Protected. Writing to this register has no effect.							

RV-3032-C7

3.2. REGISTER OVERVIEW

After reset, all registers are set according to Table in section REGISTER RESET VALUES SUMMARY.

Register Definitions; RAM, Address 00h to 25h:

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit	
00h	100 th Seconds	R	80	40	20	10	8	4	2	1	
01h	Seconds	R/WP	0	40	20	10	8	4	2	1	
02h	Minutes	R/WP	0	40	20	10	8	4	2	1	
03h	Hours	R/WP	0	0	20	10	8	4	2	1	
04h	Weekday	R/WP	0	0	0	0	0	4	2	1	
05h	Date	R/WP	0	0	20	10	8	4	2	1	
06h	Month	R/WP	0	0	0	10	8	4	2	1	
07h	Year	R/WP	80	40	20	10	8	4	2	1	
08h	Minutes Alarm	R/WP	AE_M	40	20	10	8	4	2	1	
09h	Hours Alarm	R/WP	AE_H	0	20	10	8	4	2	1	
0Ah	Date Alarm	R/WP	AE_D	0	20	10	8	4	2	1	
0Bh	Timer Value 0	R/WP	128	64	32	16	8	4	2	1	
0Ch	Timer Value 1	R/WP	0	0	0	0	2048	1024	512	25	
0Dh	Status	R/WP	THF	TLF	UF	TF	AF	EVF	PORF	VL	
0Eh	Temperature LSBs	R/WP		TEMF	P [3:0]	•	EEF	EEbusy	CLKF	BSF	
0Fh	Temperature MSBs	R				TEMP	[11:4]	•			
10h	Control 1	R/WP	-	-	Х	USEL	TE	EERD	Т	D	
11h	Control 2	R/WP	-	CLKIE	UIE	TIE	AIE	EIE	Х	STO	
12h	Control 3	R/WP	-	-	-	BSIE	THE	TLE	THIE	TL	
13h	Time Stamp Contr.	R/WP	-	-	EVR	THR	TLR	EVOW	THOW	TLC	
14h	Clock Int. Mask	R/WP	CLKD	INTDE	CEIE	CAIE	CTIE	CUIE	CTHIE	CTL	
15h	EVI Control	R/WP	CLKDE	EHL	E	Т	0	0	0	ES	
16h	TLow Threshold	R/WP				TI	Т				
17h	THigh Threshold	R/WP				Tł	ΗT				
18h	TS TLow Count	R	128	64	32	16	8	4	2	1	
19h	TS TLow Seconds	R	0	40	20	10	8	4	2	1	
1Ah	TS TLow Minutes	R	0	40	20	10	8	4	2	1	
1Bh	TS TLow Hours	R	0	0	20	10	8	4	2	1	
1Ch	TS TLow Date	R	0	0	20	10	8	4	2	1	
1Dh	TS TLow Month	R	0	0	0	10	8	4	2	1	
1Eh	TS TLow Year	R	80	40	20	10	8	4	2	1	
1Fh	TS THigh Count	R	128	64	32	16	8	4	2	1	
20h	TS THigh Seconds	R	0	40	20	10	8	4	2	1	
21h	TS THigh Minutes	R	0	40	20	10	8	4	2	1	
22h	TS THigh Hours	R	0	0	20	10	8	4	2	1	
23h	TS THigh Date	R	0	0	20	10	8	4	2	1	
24h	TS THigh Month	R	0	0	0	10	8	4	2	1	
25h	TS THigh Year	R	80	40	20	10	8	4	2	1	

Address Function Conv. Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 26h R TS EVI Count 128 64 32 16 8 4 2 1 27h TS EVI 100th Sec. R 80 40 20 10 8 4 2 1 28h TS EVI Seconds R 0 40 20 10 8 4 2 1 29h TS EVI Minutes R 40 20 10 8 4 2 1 0 4 TS EVI Hours R 2Ah 20 10 8 2 1 0 0 TS EVI Date 4 2Bh R 0 0 20 10 8 2 1 2Ch TS EVI Month R 0 0 0 10 8 4 2 1 2Dh TS EVI Year R 80 40 20 10 8 4 2 1 Prot. 2Eh to 38h RESERVED RESERVED W 39h Password 0 PW [7:0] W 3Ah Password 1 PW [15:8] 3Bh Password 2 W PW [23:16] W 3Ch Password 3 PW [31:24] EE Address 3Dh R/WP EEADDR 3Eh EE Data R/WP EEDATA 3Fh EE Command WP EECMD User RAM R/WP 40h to 4Fh 16 Bytes of User RAM (16 Bytes) 50h to BFh RESERVED RESERVED Prot. CBh to FFh RESERVED Prot. RESERVED Read only. Always 0.

Register Definitions; RAM, Address 26h to FFh:

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
C0h	EEPROM PMU	R/WP	P NCLKE BSM TCR TCM) M
C1h	EEPROM Offset	R/WP	PORIE	PORIE VLIE OFFSET						
C2h	EEPROM Clkout 1	R/WP				HFD	[7:0]			
C3h	EEPROM Clkout 2	R/WP	OS	OS FD HFD [12:8]						
C4h	EEPROM TReference 0	R/WP	TREF [7:0]							
C5h	EEPROM TReference 1	R/WP	TREF [15:8]							
C6h	EEPROM Password 0	*WP	EEPW [7:0] EEPW [15:8]							
C7h	EEPROM Password 1	*WP								
C8h	EEPROM Password 2	*WP		EEPW [23:16]						
C9h	EEPROM Password 3	*WP	EEPW [31:24]							
CAh	EEPROM PW Enable	WP	EEPWE							

Register Definitions; Configuration EEPROM with RAM mirror, Address C0h to CAh:

*WP: For the EEPW registers, RAM mirror is Write only. Returns 0 when read. But the EEPROM of the EEPW can be READ when write protection is disabled (unlocked). The active zone for the EEPW is the EEPROM and not the RAM mirror as with the other Configuration registers.

Register Definitions; User EEPROM, Address CBh to EAh:

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CBh to EAh	User EEPROM (32 Bytes)	R/WP	32 Bytes of non-volatile User EEPROM							

3.3. CLOCK REGISTERS

00h – 100th Seconds

This register holds the count of hundredths of seconds, in two binary coded decimal (BCD) digits. Values will be from 00 to 99.

Read only. Writing to this register has no effect.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
00h	100 th Seconds	R	80	40	20	10	8	4	2	1
00h	Reset		0	0	0	0	0	0	0	0
Bit	Symbol		Value				Description	n		
7:0	100 th Seconds		00 to 99	When ST ESYN bit	OP bit is se is 1 in case	et to 1 or wh e of an Exte	en writing t rnal Event	coded in B0 to the Second detection of e TIME SYI	nds registe n EVI pin th	e 100 th

01h – Seconds

This register holds the count of seconds, in two binary coded decimal (BCD) digits. Values will be from 00 to 59. Read: Always readable. Write: Can be write-protected by password.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
01h	Seconds	R/WP	0	40	20	10	8	4	2	1
UIII	Reset		0	0	0	0	0	0	0	0
Bit	Symbol		Value				Descriptio	n		
7	0		0	Read only	y. Always 0					
6:0	Seconds		00 to 59	When wri to 00 (sim register va	ting to the \$ nilar to ESY	Seconds re N Bit functi ns unchang	on). When	format. 00 th Second STOP bit is e 1 Hz clock	1 the Seco	nds

02h – Minutes

This register holds the count of minutes, in two binary coded decimal (BCD) digits. Values will be from 00 to 59. Read: Always readable. Write: Can be write-protected by password.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
02h	Minutes	R/WP	0	40	20	10	8	4	2	1
0211	Reset		0	0	0	0	0	0	0	0
Bit	Symbol		Value			[Descriptior	ı		
7	0		0	Read only	/. Always 0					
6:0	Minutes		00 to 59	Holds the	count of m	inutes, code	ed in BCD f	ormat.		

03h – Hours

This register holds the count of hours, in two binary coded decimal (BCD) digits. Values will be from 00 to 23. Read: Always readable. Write: Can be write-protected by password.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
03h	Hours	R/WP	0	0	20	10	8	4	2	1
0311	Reset	·	0	0	0	0	0	0	0	0
Bit	Symbol		Value				Descriptio	n		
7:6	0		0	Read only	/. Always 0					
5:0	Hours		00 to 23	Holds the	count of ho	ours, coded	in BCD for	mat.		

3.4. CALENDAR REGISTERS

04h – Weekday

This register holds the current day of the week. Each value represents one weekday that is assigned by the user. Values will range from 0 to 6. The weekday counter is simply a 3-bit counter which counts up to 6 and then resets to 0.

Read: Always readable. Write: Can be write-protected by password.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Odh	Weekday	R/WP	0	0	0	0	0	4	2	1
04h	Reset		0	0	0	0	0	0	0	0
Bit	Symbol		Value				Descriptio	า		
7:3	0		0	Read only	y. Always 0					
2:0	Weekday		0 to 6	Holds the	weekday o	ounter valu	ie.			
Weekday			Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Weekday 1 – Defa	ult value							0	0	0
Weekday 2								0	0	1
Weekday 3								0	1	0
Weekday 4			0	0	0	0	0	0	1	1
Weekday 5								1	0	0
Weekday 6								1	0	1
Weekday 7								1	1	0

05h – Date

This register holds the current day of the month, in two binary coded decimal (BCD) digits. Values will range from 01 to 31. Leap years are correctly handled from 2000 to 2099.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OEb	Date	R/WP	0	0	20	10	8	4	2	1
05h	Reset		0	0	0	0	0	0	0	1
Bit	Symbol		Value				Description	า		
7:6	0		0	Read only	/. Always 0					
5:0	Date		01 to 31		current dat value = 01	te of the mo	onth, coded	in BCD for	mat.	

RV-3032-C7

06h – Month

This register holds the current month, in two binary coded decimal (BCD) digits. Values will range from 01 to 12. Read: Always readable. Write: Can be write-protected by password.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
06h	Month	R/WP	0	0	0	10	8	4	2	1
06h	Reset		0	0	0	0	0	0	0	1
Bit	Symbol		Value				Descriptio	n		
7:5	0		0	Read only	y. Always 0					
4:0	Month		01 to 12	Holds the	current mo	onth, coded	in BCD for	mat.		
Months			Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
January – Default	value					0	0	0	0	1
February						0	0	0	1	0
March						0	0	0	1	1
April						0	0	1	0	0
May						0	0	1	0	1
June			0	0	0	0	0	1	1	0
July			0	0	0	0	0	1	1	1
August						0	1	0	0	0
September						0	1	0	0	1
October						1	0	0	0	0
November						1	0	0	0	1
December						1	0	0	1	0

07h – Year

This register holds the current year, in two binary coded decimal (BCD) digits. Values will range from 00 to 99. Leap years are correctly handled from 2000 to 2099.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
07h	Year	R/WP	80	40	20	10	8	4	2	1
07h	Reset	•	0	0	0	0	0	0	0	0
Bit	Symbol		Value			I	Description	1		
7:0	Year		00 to 99	Holds the	current yea	ar, coded in	BCD forma	at. – Defaul	t value = 00)

3.5. ALARM REGISTERS

08h – Minutes Alarm

This register holds the Minutes Alarm Enable bit AE_M and the alarm value for minutes, in two binary coded decimal (BCD) digits. Values will range from 00 to 59.

Read: Always readable. Write: Can be write-protected by password.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
096	Minutes Alarm	R/WP	AE_M	40	20	10	8	4	2	1
08h	Reset		0	0	0	0	0	0	0	0
Bit	Symbol		Value			I	Description	า		
_									_D	
7	AE_M		0	Enabled.	 Default va 	alue				
			1 Disabled.							
6:0	Minutes Alarm									

09h – Hours Alarm

This register holds the Hours Alarm Enable bit AE_H and the alarm value for hours, in two binary coded decimal (BCD) digits. Values will range from 00 to 23.

Read: Always readable. Write: Can be write-protected by password.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
09h	Hours Alarm	R/WP	AE_H	0	20	10	8	4	2	1
0911	Reset		0	0	0	0	0	0	0	0
Bit	Symbol		Value				Description	า		
				Hours Alar	m Enable b	oit (see USE	E OF THE A	LARM INT	ERRUPT).	
7	AE_H		0	Enabled.	 Default v 	alue				
			1	Disabled.						
6	0		0 Read only. Always 0.							
5:0	Hours Alarm		00 to 23	Holds the	alarm valu	e for hours	, coded in B	CD format.		

0Ah – Date Alarm

This register holds the Date Alarm Enable bit AE_D. It holds the alarm value for the date, in two binary coded decimal (BCD) digits. Values will range from 01 to 31. Leap years are correctly handled from 2000 to 2099. Read: Always readable. Write: Can be write-protected by password.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0Ah	Date Alarm	R/WP	AE_D	0	20	10	8	4	2	1
UAN	Reset		0	0	0	0	0	0	0	0
Bit	Symbol		Value			I	Description	า		
			[Date Alarm			arm togethe LARM INTE		M and AE_H	4
7	AE_D		0	Enabled.	 Default v 	alue				
			1	Disabled.						
6	0		0	Read only	y. Always 0					
5:0	Date Alarm		01 to 31		alarm valu OR has to				at. The Res o 31).	set value

3.6. PERIODIC COUNTDOWN TIMER CONTROL REGISTERS

0Bh – Timer Value 0

This register is used to set the lower 8 bits of the 12 bit Timer Value (preset value) for the Periodic Countdown Timer. This value will be automatically reloaded into the Countdown Timer when it reaches zero. This allows for periodic timer interrupts (see calculation below).

Read: Always readable. Write: Can be write-protected by password.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ODh	Timer Value 0	R/WP	128	64	32	16	8	4	2	1
0Bh	Reset		0	0	0	0	0	0	0	0
Bit	Symbol		Value				Descriptio	n		
7:0	Timer Value 0		00h to FFh	8 bit) (see only the p When the	e USE OF 1 preset value	the Periodic THE PERIO is returned countdown 7 RAM byte.	DIC COUN and not th	TDOWN TI e actual val	MER). Whe	en read,

0Ch – Timer Value 1

This register is used to set the upper 4 bits of the 12 bit Timer Value (preset value) for the Periodic Countdown Timer. This value will be automatically reloaded into the Countdown Timer when it reaches zero. This allows for periodic timer interrupts (see calculation below).

Read: Always readable. Write: Can be write-protected by password.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0Ch	Timer Value 1	R/WP	0	0	0	0	2048	1024	512	256	
001	Reset		0	0	0	0	0	0	0	0	
Bit	Symbol		Value				Description	1			
7:4	0		0	Read only. Always 0.							
3:0	Timer Value 1	0h to Fh	4 bit) (see	USE OF T	THE PERIC	c Countdow DIC COUN and not the	TDOWN TI	MER). Whe			

Countdown Period in seconds:

Countdown Period = $\frac{\text{Timer Value}}{\text{Timer Clock Frequency}}$

3.7. STATUS REGISTER

0Dh – Status

This register is used to detect the occurrence of various interrupt events and reliability problems in internal data. Read: Always readable. Write: Can be write-protected by password.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
	Status	R/WP	THF	TLF	UF	TF	AF	EVF	PORF	VLF				
0Dh	Reset		0	0	0	0	0	Х	1	0				
Bit	Symbol		Value				Descriptio	n						
			Temp	erature Hig	h Flag (see				UPT FUNC	TION)				
			0	No event	detected.					,				
7	THF		1	If set to 0 beforehand, indicates the occurrence of a temperature that is above the stored Temperature High Threshold value THT. The value 1 is retained until a 0 is written by the user. THF is also cleared to 0 when writing 1 to the THR bit.										
			Tem	Temperature Low Flag (see TEMPERATURE LOW INTERRUPT FUNCTION)										
			0	No event										
6	TLF		1	below the The value	e stored Ter e 1 is retain	mperature l ed until a 0	the occurre ow Thresh is written b riting 1 to th	old value T y the user.		that is				
					P	eriodic Tim	e Update Fl	ag						
-			0			IME UPDA	TE INTERF	RUPT FUN	CTION)					
5	UF		0		detected.	d indicator	the occurre	nco of a P	oriodic Tim					
			1				etained unti							
					Peri	odic Counte	down Timer	Flag						
			0	1		NTDOWN	TIMER INT	ERRUPT F	UNCTION)					
4	TF		0		detected.	d indicates	the occurre	ance of a P	eriodic Cou	ntdown				
			1				e 1 is retain							
				user.						-				
			Alarm Flag (see ALARM INTERRUPT FUNCTION)											
0	. –		0	No event detected. If set to 0 beforehand, indicates the occurrence of an Alarm Interrupt										
3	AF		1				ntil a 0 is w			upi				
			I			only on incr	ement to a	matched ca	ase (and no	t all the				
			E	time it is ternal Ever		EXTERNA								
			L/				the voltage							
			X	to be cl			the bit. Bec			, the low				
2	EVF		Х	If X = 1. a			as an Exterr ted on EVI		iterrupt.					
-							cted on EV							
			0	No event										
			1				the occurre ritten by the		±xternal Ev	ent. The				
			Pov	wer On Res					PT FUNCTI	ON)				
			0	1			9 V) detecte			,				
1	PORF			If set to 0	beforehan	d, indicates	a voltage o	Irop below						
			1	is retaine	d until a 0 i	s written by	all registers the user. B ust reset it i	ecause the	e flag is set	to 1 when				
				0	0 (E LOW INT		,					
			0	0 No voltage drop of the internal voltage below V_{LOW} (1.2 V) detected (
			V _{BACKUP}). At power on (POR) the VLF flag is automatically cleared to (If set to 0 beforehand, indicates a voltage drop below V _{LOW} . The data											
0	VLF			device ar	e no longer	valid and a	all registers	must be ini	tialized. Th	e voltage				
			1			d every sec	ond. The va	alue 1 is ret	ained until	a 0 is				
				If the inte	the user. rnal voltage	e is below \	(LOW, the ter	nperature c	ompensatio	on is				
				stopped,	CLKOUT is	LOW and	the I ² C inte	rface is disa	abled.					

3.8. TEMPERATURE REGISTERS

0Eh – Temperature LSBs

This register hosts the 4 least significant bits (LSBs) of the Temperature value TEMP [11:0] in two's complement format (fractional part). The register is also used to detect the occurrence of various interrupt events and reliability problems in internal data.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0Eh	Temperature LSBs	R/WP		TEMF	^o [3:0]	•	EEF	EEbusy	CLKF	BSF
UEN	Reset			0h –	▶ Xh		0	$1 \rightarrow 0$	0	0
Bit	Symbol		Value				Descriptio	n		
7:4	TEMP [3:0]		Oh to Fh Image: Second Construction of the term of ter							
			TEMPERATURE THRESHOLDS REGISTERS). EEPROM Memory Write Access Failed Flag (see EEF FLAG)							
			0	Previous	write acces	s was succ	essful.			
3	EEF		If set to 0 beforehand, indicates that the EEPROM write access has because V _{DD} has dropped below V _{DD:EEF} (1.3 V). The value 1 is retain until a 0 is written by the user.							
				EE	PROM Me		Status Bit - USY BIT)	– (Read On	ly)	
			0	The trans	fer is finish	ed.				
2	EEbusy		1	and will ig At power first refres	nore any fu up (POR) a hment is t _P	urther comr a refresh is	nands until automatica ms. After th	ndling a rea the current lly generate ne refreshm	one is finis d. The time	hed. e of this
			Clock	Output Inter	rupt Flag (s	see INTERI	RUPT CON	TROLLED	CLOCK OU	ITPUT)
	CLKF		0	No event						
1	CLKF		1 If set to 0 beforehand, indicates the occurrence of an interrupt driven clor output on CLKOUT pin. The value 1 is retained until a 0 is written by the user.							
			Backup Switch Flag (see AUTOMATIC BACKUP SWITCHOVER FUNCTION) No backup switchover detected. At power up (POR) this flag is							
0	BSF		0	automatic disabled (ally cleared BSM field =	d to 0. Whe = 00 or 11)	n the backu BSF is alwa	up switchove ays logic 0.	er function i	
			1	If set to 0 V _{BACKUP} ha	beforehand as occurred	d, indicates	that a swite 1 can be o	chover from cleared by w		

0Fh – Temperature MSBs

This register hosts the 8 most significant bits (MSBs) of the Temperature value TEMP [11:0] in two's complement format (integer part).

Read only. Writing to this register has no effect.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0Fh	Temperature MSBs	R				TEMP	[•] [11:4]			
UFN	Reset					00h -	→ XXh			
Bit	Symbol	Value Description Integer part of the Temperature value TEMP [11:0] in two's complement								
7:0	TEMP [11:4]		00h to FFh	format Stores th resolutior TEMPER The intern second. One seco The TEM	- (Read Onl e last value n in two's co ATURE RE nal temperation ond after PC P [11:4] val	y) of the mea omplement FERENCE ature sensir DR, the first lue is auton	sured inter format. See ADJUSTM ing itself is c temperatur natically cor	nal tempera e table belov IENT). arried out a re value (XX mpared to t	two's compl ture with 1 ⁴ w (see also utomatically (h) is availa he TLow an GISTERS).	°C y every able. ad THigh

Temperature/Data relationship:

Addres	ss	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0Eh		Temperature LSBs	R/WP	2 ⁻¹	2 ⁻²	2 ⁻³	2-4	EEF	EEbusy	CLKF	BSF
0Fh		Temperature MSBs	R	Sign	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰

TEMP (12 bits) examples:

TEMP [11:0] value	Hexadecimal	Decimal	Signed decimal (two's complement)	Temperature in °C(*)
0111'1111'1111	7FF	2047	2047	127.9375
0101'0101'0000	550	1360	1360	85
0100'1011'0000	4B0	1200	1200	75
0011'0010'0000	320	800	800	50
0001'1001'0000	190	400	400	25
0000'0001'0000	010	16	16	1
0000'0000'0100	004	4	4	0.25
0000'0000'0001	001	1	1	0.0625
0000'0000'0000 (default)	000	0	0	0
1111'1111'1111	FFF	4095	-1	-0.0625
1111'1111'1100	FFC	4092	-4	-0.25
1111'1111'0000	FF0	4080	-16	-1
1110'0111'0000	E70	3696	-400	-25
1101'1000'0000	D80	3456	-640	-40
1000'0000'0000	800	2048	-2048	-128

signe

Note that there is no need to read the Temperature LSBs byte (TEMP [3:0]) if resolution below 1°C is not required.

Note that the thermometer must not be operated outside the temperature range from -40 to +85°C specified by the RV-3032-C7 module

Note: The Temperature LSBs and Temperature MSBs registers know no blocking/shadowing. To get a valid 12-bit temperature value, the TEMP [11:0] value should be read after the 1 Hz tick, or up to 1 ms before a 1 Hz tick (or TEMP [11:0] value can be read twice, and then compared).

3.9. CONTROL REGISTERS

10h – Control 1

This register is used to specify the source for the Periodic Time Update Interrupt function and to select or set operations for the Periodic Countdown Timer. And it holds the control bit for automatic refresh of the Configuration Registers.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Control 1	R/WP	-	-	Х	USEL	TE	EERD	1	D
10h	Reset		0	0	0	0	0	0	0	0
	Set X to 1				1					
Bit	Symbol		Value				Descriptio	n		
7:6	-		0	Bit not im	plemented.	Will return	a 0 when r	ead.		
5	Х		1	Not used, nterrupt Se	but must b					
4	USEL		Time Update Interrupt function. (see PERIODIC TIME UPDATE INTERRUPT FUNCTION).When STOP bit is set to 1 the interrupt function is stopped. When writing to t Seconds register or when ESYN bit is 1 in case of an External Event detection of pin the length of the current update period is affected (see TIME 							
			-	c Countdow F	n Timer Er Periodic Co	able bit. Th untdown Tir	nis bit contro mer Interrup	ols the start	on '	0
3	TE		0	· ·					,	
			(see PERIODIC COUNTDOWN TIMER INTERRUPT FUNCTION). 0 Stops the Periodic Countdown Timer Interrupt function. – Default value 1 Starts the Periodic Countdown Timer Interrupt function (a countdown star from the preset value set in Timer Value registers). EEPROM Memory Refresh Disable bit. When 1, disables the automatic refresh of the							
2	EERD			Con AUTOMA Refresh is the data s beginning refreshme VBACKU	nfiguration <u>TIC REFRE</u> s active. All stored in the g of the last ent is t _{AREFR}	Registers fr	om the EEI ONFIGURA Configurat each 24 ho ore midnig Refresh is	PROM Men ATION EEP ion Registe burs, at date ht). The tim only active	hory ROM \rightarrow R rs are refree increment e of this au	AM)). shed by t (at the tomatic
1:0	TD		00 to 11	Timer Clc Periodic C reset time COUNTD When the update (1 coordinat µs. When ST the Secon detection	ck Frequer Countdown et _{RTN1} is als OWN TIME clock sour /60 Hz), the ed with the OP bit is se nds register on EVI pin	ncy selectio Timer Inter o defined. S R INTERR ce has bee e timing of t clock upda et to 1 the ir or when E the length ONIZATIO	rupt functio See table b UPT FUNC n set to Sec both, counto te timing bu terrupt func SYN bit is 1 of the curre	n. With this elow (see a CTION). cond update down and ir ut has a ma ction is stop I in case of	e setting the liso PERIO e (1 Hz) or nterrupts, is ximum jitte oped. Wher an Externa	Auto DIC Minute r of 30.5 n writing to I Event
TD value	Timer Clock Frequ	uency	Count	tdown peri	od	t _R	۲N1		STOP b	oit
00	4096 Hz – Default va	alue	244.14 µs	3	12	22 µs		When	STOP bit	is set to 1
01	64 Hz		15.625 m	S				-	terrupt fund	
10	1 Hz		1 s		7.	813 ms			ed (see als	
11	1/60 Hz		60 s					SYNC	CHRONIZA	HON).

11h – Control 2

This register is used to enable the interrupt controlled clock output on CLKOUT pin and to control the interrupt event output for the INT pin, the hour mode and the stop/start status of clock and calendar operations. Read: Always readable. Write: Can be write-protected by password.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
11h	Control 2	R/WP	-	CLKIE	UIE	TIE	AIE	EIE	Х	STOP
1111	Reset		0	0	0	0	0	0	0	0
Bit	Symbol		Value				Description	n		
7	-		0	Bit not im	plemented.					
6	CLKIE		When en 0 1	abled, it is p (see Disabled When set when an i and accor and EEPF	Interrupt Cossible to versible to versible to versible to versible to versible to versible to the construction to the construction to the construction is disable to the construction is disable to the construction to the constr	wake-up an PT CONTR alue ock output curs, basec clock settir t 2 (C2h an	external sy OLLED CL on CLKOU I on the Clo ng defined i d C3h).	vstem by ou OCK OUTF T pin is auto ck Interrupt n registers	tputting a f PUT) omatically e Mask (reg	enabled ister 14h)
5	UIE		0	(see Pl No interru Periodic 1 cancelled An interru Periodic 1 automatic ms (Minut	Periodic 1 ERIODIC T upt signal is Fime Updat . – Default upt signal is Fime Updat cally cleared te update).	Fime Updat IME UPDA generated e event occ value generated e event occ d after t _{RTN2} (1)	e Interrupt I TE INTERF on INT pin surs or the t on INT pin surs. The lo = 500 ms (Enable bit RUPT FUNC and UF flag RTN2 - signa and the UF w-level outp Second upo	g is not set I on INT pir flag is set put signal is date) or t _{RTM}	vhen a
4	TIE		0	(see PERI No interru Timer eve – Default An interru Timer eve	pt signal is ent occurs.	NTDOWN - generated or the t _{RTN1} - generated The low-lew	TIMER INT on INT pin signal on Ī on INT pin el output si	ERRUPT F when a Pe NT pin is ca when a Pel gnal is auto	UNCTION) riodic Coun ancelled. riodic Coun omatically c	tdown leared
3	AIE		0	Timer event occurs. The low-level output signal is automatically cle after $t_{RTN1} = 122 \ \mu s$ (TD = 00) or $t_{RTN1} = 7.813 \ ms$ (TD = 01, 10, 11).Alarm Interrupt Enable bit (see ALARM INTERRUPT FUNCTION)No interrupt signal is generated on INT pin when an Alarm event oc the signal is cancelled on INT pin. – Default valueAn interrupt signal is generated on INT pin when an Alarm event oc The signal on INT pin is generated on INT pin when an Alarm event oc The signal on INT pin is retained until the AF flag is cleared to 0 (no automatic cancellation). (1)						
2	EIE		(see E 0 1	EXTERNAL No interru pin occurs An interru pin occurs	Exterr	nal Event In FERRUPT I generated nal is cance generated al on INT pi	on INT pin elled on INT on INT pin n is retaine	and INTEF when an E pin. – Defa when an E	xternal Eve ault value xternal Eve	nt on EVI
1	Х		0		but must a					
0	STOP		Stop I 0 1	op bit. This bit is used for a software-based time adjustment (synchroniza (see STOP BIT FUNCTION). Not stopped. – Default value Stops and resets the clock prescaler frequencies from 4096 Hz to 1 and the 100 th Seconds register is reset to 00. An eventual present memorized 1 Hz update is also reset. The following functions are stopped: Clock and calendar (with alarm CLKOUT, timer clock, update timer clock, EVI input filter, temperatu measurement, temperature compensation and temperature compar with THT and TLT values are stopped (see also TIME SYNCHRONIZATION).						
⁽¹⁾ Interrupt Delay a	fter CLKOUT On can	be activated	d by setting	useful dat	rnal Event I ta.	nterrupt fur	ction is still	working bu	it cannot pr	ovide

12h – Control 3

This register is used to enable temperature detections and to control the interrupt event output for the \overline{INT} pin. Read: Always readable. Write: Can be write-protected by password.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
12h	Control 3	R/WP	-	-	-	BSIE	THE	TLE	THIE	TLIE		
1211	Reset		0	0	0	0	0	0	0	0		
Bit	Symbol		Value				Description	า				
7:5	-		0	Bit not im	plemented.	Will return	a 0 when re	ead.				
4	BSIE		0	AUTOMAT No interru	ITOMATIĊ <u>FIC BACKU</u> upt signal is	BACKUP S P SWITCH generated	WITCHOVE OVER INTE on INT pin	ER FUNCT ERRUPT F when an A	UNCTION) utomatic Ba			
			1	An interru Switchov cleared to	upt signal is er occurs. T o 0 (no auto	generated he signal c matic canc	on INT pin n INT pin is ellation).	when an A	utomatic Ba ntil the BSF	ackup ⁻ flag is		
				-	,			hen read. upt Enable bit HOVER FUNCTION and NINTERRUPT FUNCTION) T pin when an Automatic Backup celled on INT pin. – Default value T pin when an Automatic Backup pin is retained until the BSF flag is				
3	THE		0 1	Enables t High Thre	he Temperation	ature High the corres	detection wi	ith program ne Stamp fu	mable Terr			
			T									
			0 Temper	1	,					NCTION)		
2	TLE		1	Enables t Low Thre	he Temper shold, and	ature Low of the corresp	letection wit	th program e Stamp fu	mable Tem			
			(see TE		Temper	ature High	Interrupt Er	able bit		CHEME)		
1	THIE		0							gh is		
			1	detected.	The signal natic cance	on INT pin lation). ⁽¹⁾	is retained	until the TH				
			(see TE	MPERATU	Temper	ature Low	Interrupt En FUNCTIO	able bit N and INTE	RRUPT SC	CHEME)		
0	TLIE		0	detected	or the signa	al is cancell	on INT pin ed on INT p	oin. – Defau	lt value			
			1	detected.		on INT pin	on INT pin is retained					
(1) Interrupt Delay	after CLKOUT On ca	an be activated	by setting			,						

3.10. TIME STAMP CONTROL REGISTER

13h – Time Stamp Control

This register holds the control bits for the Time Stamp data. Read: Always readable. Write: Can be write-protected by password.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
13h	Time Stamp Control	R/WP	0	0	EVR	THR	TLR	EVOW	THOW	TLOW			
	Reset		0	0	0	0	0	0	0	0			
Bit	Symbol		Value				Descriptio	n					
7:6	0		0	Read onl	y. Always 0								
					mp EVI Re		TIME STA	MP EVI FU	NCTION)				
5	EVR		0		- Default v		ll oight Tim	o Stamp E	/l registers				
			Writing 1 to the EVR bit resets all eight Time Stamp EVI register 1 Count to TS EVI Year) to 00h. EVR may remain set. No further reset occurs. Time Stamp THigh Reset bit (see TIME STAMP THIGH FUNCTIO										
			0		- Default v								
4	THR	THR			Writing 1 to the THR bit resets all seven Time Stamp THigh registers THigh Count to TS THigh Year) to 00h and the THF flag is also clear 0. The THR bit always returns 0 when read.								
			Time Stamp TLow Reset bit (see TIME STAMP TLOW FUNCTION)										
2			0		 Default v 								
3	TLR		1	TLow Co	to the TLR unt to TS TI bit always r	_ow Year) t	o 00h and t						
2	EVOW			100 th Secon inde The time EVI regis To initiali: written to when EV	erwrite bit. ds to TS E bendent of f (see TI stamp of th ters.– Defa ze or reinitia the EVR bi I pin = HIGH For the Tim	/I Year). The he settings <u>ME STAMF</u> e first occurult value alize the first t to clear al t).	e TS EVI C of the over <u>P EVI FUNC</u> rred event i t event dete I TS EVI reg	Count regist write bit EV CTION) s recorded ection funct gisters (PO	er is always 'OW. and remain ion, 1 has t R has same	s working, s in TS o be e effect,			
	is responsible for detecting first or last an overflow of the TS EVI Count regist is allowed by the function. 1 The time stamp of the last occurred ev are overwritten.					or last ever t register fro red event i	ster from 255 to 0, a new First Eve event is recorded and TS EVI regis						
			registe	ers (TS THi ways worki		to TS THig dent of the IE STAMP	h Year). Th settings of THIGH FUI	ne TS THigl the overwri NCTION)	n Count reg te bit THO\	ister is V.			
1	THOW		0	THigh reg To initializ written to effect).	stamp of th gisters. – De ze or reinitia the THR bi	efault value alize the firs t to clear al	t event det I TS THigh	ection funct registers (F	ion, 1 has t 'OR has sa	o be me			
			1 The time stamp of the last occurred event is recorded and TS THigh registers are overwritten.										
			Time Stamp TLow Overwrite bit. Controls the overwrite function of the TS T registers (TS TLow Seconds to TS TLow Year). The TS TLow Count register is working, independent of the settings of the overwrite bit TLOW. (see TIME STAMP TLOW FUNCTION)										
0	TLOW		0 The time stamp of the first occurred event is recorded and remains in TLow registers. – Default value To initialize or reinitialize the first event detection function, 1 has to be written to the TLR bit clear all TS TLow registers (POR has same effe										
			1		stamp of th are overwri		rea event i	s recorded	and IS ILC	W			

3.11. CLOCK INTERRUPT MASK REGISTER

14h – Clock Interrupt Mask

This register is used select a CLKOUT off Delay Value after I²C STOP and to enable the Interrupt Delay after CLKOUT On. It is also used to select a predefined interrupt for Interrupt Controlled Clock Output. Setting a bit to 1 selects the corresponding interrupt. Multiple interrupts can be selected. After power on, no interrupt is selected (see INTERRUPT SCHEME and CLOCK OUTPUT SCHEME).

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
14h	Clock Interrupt Mask	R/WP	CLKD	INTDE	CEIE	CAIE	CTIE	CUIE	CTHIE	CTLIE				
	Reset		0	0	0	0	0	0	0	0				
Bit	Symbol		Value				Description	1						
7	CLKD		۹ 0	o o o o o o o o o o o o o o o o o o o	nÌy when C see CLKOL	LKDE bit in JT OFF DE	the EVI Co LAY AFTER	ontrol registe R I2C STOF	er is set to '	1.				
			1 Typical delay time t _{I2C:CLK} = 75 ms. 1 Typical delay time t _{I2C:CLK} = 75 ms. Interrupt Delay after CLKOUT On Enable bit. Applicable only when NCLKE bit in the EEPROM PMU register is set to 1 (CLKO not directly enabled) and for interrupts enabled by CEIE, CAIE, CTIE, CUIE, CTHI CTLIE (see INTERRUPT DELAY AFTER CLKOUT ON) 0 No delay. – Default value 1 Enables the delay time t _{CLK:INT} of 1/256 seconds to 3/512 seconds ≈ 3.9 to 5.9 ms. Clock output when EVI Interrupt Enable bit. 0 Disabled – Default value											
6	INTDE		not direct	ble only whe ly enabled) CTLI	Interrupt Deen NCLKE I and for inte E (see INTE	elay after C bit in the EE errupts ena ERRUPT D	LKOUT On PROM PM bled by CEI	U register i E, CAIE, C	s set to 1 (0 TIE, CUIE,					
			-	,			1/256 seco	0 0 1 ² C STOP Selection bit. Control register is set to 1. TER I2C STOP) ifault value On Enable bit. PMU register is set to 1 (CLKOU CEIE, CAIE, CTIE, CUIE, CTHIE FTER CLKOUT ON) seconds to 3/512 seconds ≈ 3.9 upt Enable bit. 1) rupt Enable bit. 1) rimer Interrupt Enable bit. 1) rrupt delay is added. ate Interrupt Enable bit. 1) rupt Enable bit.						
			1			TO CER.INT OF	1/200 0000		2 00001140	0.0 11				
					Clock outp	out when E	/I Interrupt	AY AFTER I2C STOP) s. – Default value KOUT On Enable bit. PROM PMU register is set to 1 (CLKOU ed by CEIE, CAIE, CTIE, CUIE, CTHIE LAY AFTER CLKOUT ON) I/256 seconds to 3/512 seconds ≈ 3.9 n Interrupt Enable bit. cted. ⁽¹⁾ n Interrupt Enable bit. cted. ⁽¹⁾ down Timer Interrupt Enable bit. cted. ⁽¹⁾ down Timer Interrupt Enable bit. cted. ⁽¹⁾ no interrupt delay is added. e Update Interrupt Enable bit.						
5	CEIE		0	Disabled	– Default va	alue								
			1	Enabled.	Internal sig	nal EI is se	lected. (1)	0 0 0 n STOP Selection bit. s STOP Selection bit. 1 nemotion register is set to 1. 1 R Enable bit. 1 IU register is set to 1 (CLKOU E, CAIE, CTIE, CUIE, CTHE ER CLKOUT ON) onds to 3/512 seconds ≈ 3.9 r Enable bit. t Enable bit. er Interrupt Enable bit. pt delay is added. Interrupt Enable bit. tt Enable bit.						
				1	Clock outpu	it when Ala	rm Interrup	t Enable bit						
4	CAIE		0		 Default va 									
			1		Internal sig									
				Clock outp	ut when Pe	riodic Cour	ntdown Time	er Interrupt	Enable bit.					
3	CTIE		0		 Default va 									
-			1	Enabled: If TD = 00	Internal sig) (4096 Hz)	nal TI is se is selected	lected. ⁽¹⁾ , no interrup	ot delay is a	added.					
				Clock ou	utput when	Periodic Ti	ne Update	Interrupt Er	nable bit.					
2	CUIE		0	Disabled	 Default va 	alue								
			1	Enabled.	Internal sig	nal UI is se	lected. ⁽¹⁾							
					Clock outpu	ut when TH		t Enable bit						
1	CTHIE		0	Disabled	Disabled – Default value									
			1	Enabled. Internal signal THI is selected. ⁽¹⁾										
		Clock output when TLow Interrupt Enable bit												
0	CTLIE		0											
			1	Enabled.	Internal sig	nal TLI is s	elected. (1)							

3.12. EVI CONTROL REGISTER

15h – EVI Control

This register controls the event detection on the EVI pin. Depending of the EHL bit, high or low level (or rising or falling edge) can be detected. Moreover a digital glitch filtering can be applied to the EVI signal by selecting a sampling period t_{SP} in the ET field. Furthermore this register holds the enable bit for the CLKOUT off Delay after I²C STOP and the External Event Synchronization bit.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
15h	EVI Control	R/WP	CLKDE	EHL	E	Т	0	0	0	ESYN		
1511	Reset		0	0	0	T \circ \circ ES 0 0 0 0 0 Description h) off Delay after I ² C STOP Enable bit alue me t _{I2C:CLK} can be selected with CLKD bit in Clock er. (Rising/Falling Edge) selection for detection AL EVENT INTERRUPT FUNCTION) = 00) or low level (ET ≠ 00) is regarded as the n EVI. – Default value = 00) or high level (ET ≠ 00) is regarded as the						
Bit	Symbol		Value				Descriptio	n				
				CLK	OUT (switc	h) off Delay	/ after I ² C S	TOP Enab	le bit			
7	CLKDE		0	Disabled	 Default va 	alue						
	01.01		1	Interrupt	Mask regist	er.						
				(se	e EXTERN/	AL EVENT	INTERRUF	T FUNCTI	ON)			
6	EHL		0	External	Event on pir	n EVÍ. – De	fault value	, 0				
			1		g edge (ET : Event on pir		h level (ET	≠ 00) is reថ	garded as t	he		
					digital filterir	ng to the EV	/l pin by sa	mpling the				
5:4	ET		00	No filterin	ng. Edge det	tection. – D	efault value)				
			01	Sampling	period t _{SP} =	= 3.9 ms (2	56 Hz). Edg	ge & Level o	detection.			
			10	Sampling	period t _{SP} =	= 15.6 ms (64 Hz). Edg	ge & Level o	detection.			
			11	1 0	period t _{SP} =	,	8 Hz). Edge	& Level de	tection.			
3:1	0		0	Read onl	y. Always 0							
			This bit	is used for	External I a hardware		Synchronize adjustmer		N BIT FUN	ICTION).		
			0	Disabled	 Default va 	alue						
0	ESYN		1	frequenci is reset to When an first and t After the If 1, the s	f an Externa ies from 409 0 00. An eve External Ex then the 100 event detec synchronizat	96 Hz to 1 H entual prese vent occurs 0 th Seconds tion, the ES tion function	Iz are reset ent memoriz , the Time S register is SYN bit is re	t and the 10 zed 1 Hz up Stamp EVI i cleared to 0 eset to 0 au	00 th Second odate is also is always ci 00. tomatically	ls register o reset. reated		

3.13. TEMPERATURE THRESHOLDS REGISTERS

16h – TLow Threshold

In this register, the user can define the Temperature Low Threshold value TLT which is compared with the TEMP [11:4] value in the Temperature MSBs register. TLT is stored in the same two's complement format as the TEMP [11:4] (see TEMPERATURE REGISTERS).

Read: Always readable. Write: Can be write-protected by password.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
16h	TLow Threshold	R/WP				TI	LT			
1011	Reset		0	0	0	0	0	0	0	0
Bit	Symbol		Value				Descriptio	n		
7:0	TLT		-128 to 127	format lik temperati when TEI	e TEMP [11 ure is auton MP [11:4] < ATURE LO	1:4]. The int natically co TLT (see 1	lue with 1°C teger part T mpared to t FEMPERAT RUPT FUNC	EMP [11:4] his value. <i>A</i> URE REG	from the in an event is a STERS,	ternal generated

17h – THigh Threshold

In this register, the user can define the Temperature High Threshold value THT which is compared with the TEMP [11:4] value in the Temperature MSBs register. THT is stored in the same two's complement format as the TEMP [11:4] (see TEMPERATURE REGISTERS).

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
17h	THigh Threshold	R/WP				TI	ΗT			
1711	Reset		0	0	0	0	0	0	0	0
Bit	Symbol		Value Description							
7:0	тнт		-128 to 127	complement the intern is generat REGISTE	ent format I al temperat ted when T	ike TEMP [ture is auto EMP [11:4] ERATURE	matically co > THT (see	nteger part mpared to e TEMPER	TEMP [11:4 this value. A	An event

3.14. TIME STAMP TLOW REGISTERS

Seven Time Stamp TLow registers (TS TLow Count and TS TLow Seconds to TS TLow Year), (see TIME STAMP TLOW FUNCTION).

18h – TS TLow Count

This register contains the number of occurrences of Temperature Low events (TEMP [11:4] < TLT) in standard binary format. The values range from 0 to 255.

Read only. Writing to this register has no effect.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
18h	TS TLow Count	R	128	64	32	16	8	4	2	1	
1011	Reset		0	0	0	0	0	0	0	0	
Bit	Symbol		Value	Description							
7:0	TS TLow Count		0 to 255	case of a When bit When bit The coun of the ove The TS T	of occurrence n overflow t TLE = 0, th TLE = 1, th ter TS TLow erwrite bit T 'Low Count Low Reset b	the counter e counter s e counter is w Count is a LOW. register is r	starts again tops counti increased always work	n with 00h. ng events. when even king, indepe when 1 is	t occurs. endent of th written to th	e settings ne Time	

19h – TS TLow Seconds

This register holds a recorded Temperature Low Time Stamp of the Seconds register, in two binary coded decimal (BCD) digits. The values are from 00 to 59.

Read only. Writing to this register has no effect.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
19h	TS TLow Seconds	R	0	40	20	10	8	4	2	1
1911	Reset		0	0	0	0	0	0	0	0
Bit	Symbol		Value			I	Descriptio	n		
7	0		0	Read only	y. Always 0					
6:0	TS TLow Seconds		00 to 59	coded in setting of occurred The TS T	ecorded Te BCD forma the TLOW event. Low Secon mp TLow R	t. When ena bit, it conta ds register	abled (bit T ins the time is reset to (LE = 1), dep stamp of the stamp	pending on he first or la is written to	the ist o the

1Ah – TS TLow Minutes

This register holds a recorded Temperature Low Time Stamp of the Minutes register, in two binary coded decimal (BCD) digits. The values are from 00 to 59.

Read only. Writing to this register has no effect.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1Ah	TS TLow Minutes	R	0	40	20	10	8	4	2	1
TAI	Reset		0	0	0	0	0	0	0	0
Bit	Symbol		Value			I	Descriptio	n		
7	0		0	Read only	y. Always 0					
6:0	TS TLow Minutes		00 to 59	coded in setting of occurred The TS T	BCD formate the TLOW event. Low Minute	t. When ena bit, it conta es register is	abled (bit T ins the time s reset to 0	LE = 1), de stamp of t 0h when 1 i	e Minutes re pending on he first or la s written to FUNCTION	the ist the Time

1Bh – TS TLow Hours

This register holds a recorded Temperature Low Time Stamp of the Hours register, in two binary coded decimal (BCD) digits. Values will range from 00 to 23.

Read only. Writing to this register has no effect.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1Db	TS TLow Hours	R	0	0	20	10	8	4	2	1
1Bh	Reset		0	0	0	0	0	0	0	0
Bit	Symbol		Value			I	Descriptio	n		
7:6	0		0	Read only	y. Always 0					
5:0	TS TLow Hours		00 to 23	coded in setting of occurred The TS T	BCD forma the TLOW event. Low Hours	t. When ena bit, it conta register is i	abled (bit T ins the time reset to 00h	Stamp of the LE = 1), de e stamp of t when 1 is MP TLOW	pending on he first or la written to th	the ist ne Time

1Ch – TS TLow Date

This register holds a recorded Temperature Low Time Stamp of the Date register, in two binary coded decimal (BCD) digits. The values will range from 01 to 31.

Read only. Writing to this register has no effect.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1Ch	TS TLow Date	R	0	0	20	10	8	4	2	1
TCh	Reset		0	0	0	0	0	0	0	0
Bit	Symbol		Value				Descriptio	n		
7:6	0		0	Read only	y. Always 0	•				
5:0	TS TLow Date		01 to 31	coded in setting of occurred The TS T Stamp TL The value	BCD forma the TLOW event. Low Date r ow Reset b 00 after P	t. When en bit, it conta egister is re bit TLR (see OR or after	Low Time S abled (bit T ins the time eset to 00h TIME STA the reset we emperature	LE = 1), de stamp of t when 1 is w MP TLOW vith the TLR	pending on he first or la rritten to the FUNCTION	the ist Time N). aced by a

1Dh – TS TLow Month

This register holds a recorded Temperature Low Time Stamp of the Month register, in two binary coded decimal (BCD) digits. The values will range from 01 to 12. Read only. Writing to this register has no effect.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1Dh	TS TLow Month	R	0	0	0	10	8	4	2	1
IDN	Reset	•	0	0	0	0	0	0	0	0
Bit	Symbol		Value				Descriptio	n		
7:5	0		0	Read only	y. Always 0					
4:0	TS TLow Month		01 to 12	coded in setting of occurred The TS T Stamp TL The value	BCD formative the TLOW event. Low Month Low Reset to 00 after Provided the second	t. When en bit, it conta register is bit TLR (see OR or after	Low Time S abled (bit T ins the time reset to 00h TIME STA the reset w emperature	LE = 1), de stamp of the when 1 is MP TLOW with the TLR	pending on he first or la written to th FUNCTION	the ist ne Time N). aced by a

1Eh – TS TLow Year

This register holds a recorded Temperature Low Time Stamp of the Year register, in two binary coded decimal (BCD) digits. Values will range from 00 to 99.

Read only. Writing to this register has no effect.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1 .	TS TLow Year	R	80	40	20	10	8	4	2	1
1Eh	Reset		0	0	0	0	0	0	0	0
Bit	Symbol		Value				Descriptio	n		
7:0	TS TLow Year		00 to 99	coded in setting of occurred The TS T	BCD forma the TLOW event. Low Year r	t. When ena bit, it conta egister is re	abled (bit T ins the time eset to 00h	LE = 1), dep stamp of th when 1 is w	e Year regis bending on he first or la rritten to the FUNCTION	the st Time

3.15. TIME STAMP THIGH REGISTERS

Seven Time Stamp THigh registers (TS THigh Count and TS THigh Seconds to TS THigh Year), (see TIME STAMP THIGH FUNCTION).

1Fh – TS THigh Count

This register contains the number of occurrences of Temperature High events (TEMP [11:4] > THT) in standard binary format. The values range from 0 to 255.

Read only. Writing to this register has no effect.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1Fh	TS THigh Count	R	128	64	32	16	8	4	2	1
IFII	Reset		0	0	0	0	0	0	0	0
Bit	Symbol	ymbol					Descriptio	n		
7:0	TS THigh Count		0 to 255	case of a When bit When bit The coun settings o The TS T	n overflow t THE = 0, th THE = 1, th ter TS THig of the overw High Count	the counter ne counter is the counter is the count is trite bit THC tregister is	starts again stops count s increased always wor DW. reset to 000	n with 00h. ing events. I when ever king, indep n when 1 is	coded in bin nt occurs. endent of th written to th H FUNCTIC	ne ne Time

20h – TS THigh Seconds

This register holds a recorded Temperature High Time Stamp of the Seconds register, in two binary coded decimal (BCD) digits. The values are from 00 to 59.

Read only. Writing to this register has no effect.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
20h	TS THigh Seconds	R	0	40	20	10	8	4	2	1
2011	Reset		0	0	0	0	0	0	0	0
Bit	Symbol		Value			I	Descriptio	n		
7	0		0	Read only	y. Always 0					
6:0	TS THigh Seconds		00 to 59	coded in setting of occurred The TS T	BCD formate the THOW event. High Secor	t. When ena bit, it conta nds register	abled (bit Thins the time	HE = 1), de e stamp of t 00h when 1	e Seconds pending on he first or la is written t THIGH FUN	the ast o the

21h – TS THigh Minutes

This register holds a recorded Temperature High Time Stamp of the Minutes register, in two binary coded decimal (BCD) digits. The values are from 00 to 59.

Read only. Writing to this register has no effect.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
01h	TS THigh Minutes	R	0	40	20	10	8	4	2	1
21h	Reset		0	0	0	0	0	0	0	0
Bit	Symbol		Value				Descriptio	n		
7	0		0	Read only	y. Always 0	•				
6:0	TS THigh Minutes		00 to 59	coded in setting of occurred The TS T	BCD forma the THOW event. High Minut	t. When en bit, it conta es register	High Time S abled (bit T ains the time is reset to C ee TIME ST.	HE = 1), de e stamp of 1 00h when 1	pending on the first or la is written to	the ast the Time

22h – TS THigh Hours

This register holds a recorded Temperature High Time Stamp of the Hours register, in two binary coded decimal (BCD) digits. Values will range from 00 to 23.

Read only. Writing to this register has no effect.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
22h	TS THigh Hours	R	0	0	20	10	8	4	2	1		
2211	Reset		0	0	0	0	0	0	0	0		
Bit	Symbol Value			Description								
7:6	0		0	Read only. Always 0.								
5:0	TS THigh Hours		00 to 23	Holds a recorded Temperature High Time Stamp of the Hours register, coded in BCD format. When enabled (bit THE = 1), depending on the setting of the THOW bit, it contains the time stamp of the first or last								

23h – TS THigh Date

This register holds a recorded Temperature High Time Stamp of the Date register, in two binary coded decimal (BCD) digits. The values will range from 01 to 31.

Read only. Writing to this register has no effect.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
02h	TS THigh Date	R	0	0	20	10	8	4	2	1		
23h	Reset		0	0	0	0	0	0	0	0		
Bit	Symbol	Description										
7:6	0		0	Read only. Always 0.								
5:0	TS THigh Date		01 to 31	Holds a recorded Temperature High Time Stamp of the Date register, coded in BCD format. When enabled (bit THE = 1), depending on the setting of the THOW bit, it contains the time stamp of the first or last								

24h – TS THigh Month

This register holds a recorded Temperature High Time Stamp of the Month register, in two binary coded decimal (BCD) digits. The values will range from 01 to 12. Read only. Writing to this register has no effect.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
24h	TS THigh Month	R	0	0	0	10	8	4	2	1	
2411	Reset		0	0	0	0	0	0	0	0	
Bit	Symbol	Description									
7:5	0	Read only. Always 0.									
4:0	TS THigh Month		01 to 12	Holds a recorded Temperature High Time Stamp of the Month register, coded in BCD format. When enabled (bit THE = 1), depending on the setting of the THOW bit, it contains the time stamp of the first or last occurred event							

25h – TS THigh Year

This register holds a recorded Temperature High Time Stamp of the Year register, in two binary coded decimal (BCD) digits. Values will range from 00 to 99.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0Eb	TS THigh Year	R	80	40	20	10	8	4	2	1
25h	Reset		0	0	0	0	0	0	0	0
Bit	Symbol		Value			I	Descriptio	n		
7:0	TS THigh Year		00 to 99	coded in setting of occurred The TS T	ecorded Te BCD forma the THOW event. High Year I High Reset	t. When ena bit, it conta register is re	abled (bit Th ains the time eset to 00h	HE = 1), de e stamp of t when 1 is v	pending on he first or la written to the	the ast e Time

3.16. TIME STAMP EVI REGISTERS

Eight Time Stamp EVI registers (TS EVI Count and TS EVI 100th Seconds to TS EVI Year), (see TIME STAMP EVI FUNCTION).

26h – TS EVI Count

This register contains the number of occurrences of External Events on EVI pin in standard binary format. The values range from 0 to 255.

Read only. Writing to this register has no effect.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
26h	TS EVI Count	R	128	64	32	16	8	4	2	1
2011	Reset		0	0	0	0	0	0	0	Х
Bit	Symbol		Value				Descriptio	n		
7:0	TS EVI Count		0 to 255	case of a The coun of the ove The TS E Stamp E The Rese Because Interrupt. If X = 1, a	of occurrence n overflow to ter TS EVI prwrite bit E VI Count re /I Reset bit et value X d EHL = 0 at a LOW level to LOW level	he counter Count is alw VOW. egister is re EVR (see epends on POR, the lo	starts agai ways workir set to 00h v TIME STAN the voltage ow level is r ted on EVI	n with 00h. ng, indepen vhen 1 is wi /IP EVI FUN on the EVI regarded as pin.	dent of the ritten to the ICTION). pin at POR	settings Time

27h – TS EVI 100th Seconds

This register holds a recorded External Event Time Stamp of the 100th Seconds register, in two binary coded decimal (BCD) digits. The values are from 00 to 99.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
27h	TS EVI 100 th Seconds	R	80	40	20	10	8	4	2	1
	Reset		0	0	0	0	0	0	0	0
Bit	Symbol		Value			I	Descriptio	n		
7:0	TS EVI 100 th Secon	ds	00 to 99	register, o Dependin the first o The TS E	coded in BC Ig on the se r last occur VI 100 th Se	etting of the	EVOW bit, ster is reset	it contains to 00h whe	the time sta en 1 is writte	amp of en to the

28h – TS EVI Seconds

This register holds a recorded External Event Time Stamp of the Seconds register, in two binary coded decimal (BCD) digits. The values are from 00 to 59.

Read only. Writing to this register has no effect.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
20h	TS EVI Seconds	R	0	40	20	10	8	4	2	1
28h	Reset		0	0	0	0	0	0	0	0
Bit	Symbol		Value			I	Descriptio	า		
7	0		0	Read only	y. Always 0					
6:0	TS EVI Seconds		00 to 59	coded in Dependin the first o The TS E	BCD formating on the se r last occurr VI Seconds	t. etting of the red event. s register is	EVOW bit, reset to 00	np of the So it contains h when 1 is IP EVI FUN	the time sta	amp of

29h – TS EVI Minutes

This register holds a recorded External Event Time Stamp of the Minutes register, in two binary coded decimal (BCD) digits. The values are from 00 to 59.

Read only. Writing to this register has no effect.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
206	TS EVI Minutes	R	0	40	20	10	8	4	2	1
29h	Reset		0	0	0	0	0	0	0	0
Bit	Symbol		Value			l	Descriptio	n		
7	0		0	Read only	y. Always 0					
6:0	TS EVI Minutes		00 to 59	coded in Dependin the first o The TS E	BCD formating on the set r last occur VI Minutes	t. etting of the red event. register is i	EVOW bit,	it contains	inutes regis the time sta written to th ICTION).	imp of

2Ah – TS EVI Hours

This register holds a recorded External Event Time Stamp of the Hours register, in two binary coded decimal (BCD) digits. Values will range from 00 to 23.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2Ah	TS EVI Hours	R	0	0	20	10	8	4	2	1
ZAII	Reset		0	0	0	0	0	0	0	0
Bit	Symbol		Value			I	Descriptio	n		
7:6	0		0	Read only	y. Always 0					
5:0	TS EVI Hours		0 to 23	in BCD fo Dependin the first of The TS E	rmat. g on the se r last occur VI Hours re	etting of the red event.	EVOW bit, set to 00h v	it contains	ours registe the time sta ritten to the NCTION).	imp of

2Bh – TS EVI Date

This register holds a recorded External Event Time Stamp of the Date register, in two binary coded decimal (BCD) digits. The values will range from 01 to 31.

Read only. Writing to this register has no effect.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	TS EVI Date	R	0	0	20	10	8	4	2	1
2Bh	Reset	-	0	0	0	0	0	0	0	Х
Bit	Symbol		Value				Descriptio	n		
7:6	0		0	Read onl	y. Always 0).				
5:0	TS EVI Date		01 to 31	BCD form Dependir the first of The TS E Stamp E ^V The Rese Because Interrupt If $X = 1$, a If $X = 0$, r The value bit, is rep	nat. ng on the se r last occur VI Date reg VI Reset bit et value X d EHL = 0 at and an Exte a LOW leve no LOW lev e 00 after P	etting of the red event. gister is res EVR (see POR, the I POR, the I ernal Event I was detec el was detec OR (if EVI-	t Time Star EVOW bit, et to 00h wh TIME STAN the voltage ow level is r Time Stam ted on EVI ccted on EV Pin = HIGH (01 to 31) w	it contains nen 1 is wri IP EVI FUN on the EVI regarded as p is recorde pin. I pin.), or after th	the time sta tten to the T NCTION). pin at POR an Externa ed.	amp of Fime al Event h the EVR

2Ch – TS EVI Month

This register holds a recorded External Event Time Stamp of the Month register, in two binary coded decimal (BCD) digits. The values will range from 01 to 12.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2Ch	TS EVI Month	R	0	0	0	10	8	4	2	1
2011	Reset		0	0	0	0	0	0	0	Х
Bit	Symbol		Value				Descriptio	า		
7:5	0		0	Read only	y. Always 0					
4:0	TS EVI Month		01 to 12	in BCD fc Dependin the first o The TS E Stamp EV The Rese Because Interrupt : If $X = 1$, a If $X = 0$, r The value bit, is rep	ormat. ng on the set r last occur VI Month re VI Reset bit et value X d EHL = 0 at and an Exte a LOW leve too LOW leve e 00 after P	etting of the red event. egister is re EVR (see POR, the le ernal Event I was detec el was detec OR (if EVI-	t Time Star EVOW bit, set to 00h v TIME STAN the voltage bw level is r Time Stam ted on EVI cted on EV Pin = HIGH (01 to 12) w	it contains when 1 is w IP EVI FUN on the EVI egarded as p is recorde p is recorde pin. I pin.), or after th	the time sta ritten to the NCTION). pin at POF an Externa ed.	amp of Time R. al Event h the EVR

2Dh – TS EVI Year

This register holds a recorded External Event Time Stamp of the Year register, in two binary coded decimal (BCD) digits. Values will range from 00 to 99.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2Dh	TS EVI Year	R	80	40	20	10	8	4	2	1
ZDN	Reset		0	0	0	0	0	0	0	0
Bit	Symbol		Value			l	Descriptio	า		
7:0	TS EVI Year		00 to 99	BCD form Dependin the first o The TS E	nat. Ig on the se r last occur VI Year reg	etting of the red event. gister is reso	EVOW bit, et to 00h wł	it contains	ear register the time sta tten to the T ICTION).	imp of

3.17. PASSWORD REGISTERS

After a Power up and the first refreshment time $t_{PREFR} = ~66$ ms, the Password PW registers are reset to 00h. When enabled by writing 255 into the EEPROM Password Enable register EEPWE (EEPROM CAh) the Password PW registers are used to be written with the 32-Bit Password necessary to be able to write in all writable registers that have the convention WP (time, control, user RAM, configuration EEPROM and user EEPROM registers). The 32-Bit Password PW is compared to the 32 bits stored in the EEPROM Password EEPW (it is not compared to the corresponding RAM mirror) (see EEPROM PASSWORD REGISTERS).

39h – Password 0

Bit 0 to 7 from 32-bit Password. Write only. Returns 0 when read.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
39h	Password 0	W				PW	[7:0]			
3911	Reset		0	0	0	0	0	0	0	0
Bit	Symbol		Value			I	Description	า		
7:0	PW [7:0]		00h to FFh	Bit () to (trom 32) bit Deceword						

3Ah – Password 1

Bit 8 to 15 from 32-bit Password. Write only. Returns 0 when read.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
3Ah	Password 1	W				PW [15:8]			
3AN	Reset		0	0	0	0	0	0	0	0
Bit	Symbol		Value			I	Description	า		
7:0	PW [15:8]		00h to FFh	Bit 8 to 16 trom 32-bit Deceword						

3Bh – Password 2

Bit 16 to 23 from 32-bit Password. Write only. Returns 0 when read.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
3Bh	Password 2	W				PW [2	23:16]			
3011	Reset		0	0	0	0	0	0	0	0
Bit	Symbol		Value			I	Description	า		
7:0	PW [23:16]		00h to FFh	Bit 16 to 73 trom 37-bit Password						

3Ch – Password 3

Bit 24 to 31 from 32-bit Password. Write only. Returns 0 when read.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
3Ch	Password 3	W				PW [31:24]			
3011	Reset		0	0	0	0	0	0	0	0
Bit	Symbol		Value				Description	า		
7:0	PW [31:24]		00h to FFh Bit 24 to 31 from 32-bit Password							

3.18. EEPROM MEMORY CONTROL REGISTERS

See also EEPROM READ/WRITE.

3Dh – EE Address

This register holds the Address used for read or write from/to a single EEPROM Memory byte. Read: Always readable. Write: Can be write-protected by password.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
3Dh	EE Address	R/WP		EEADDR								
300	Reset		1 1 0 0 0 0 0							0		
Bit	Symbol		Value Description									
7:0	EEADDR		00h to FFh	 Default The default 	value = C0	C0h points			•	И		

3Eh – EE Data

This register holds the Data that are read from, or that are written to a single EEPROM Memory byte. Read: Always readable. Write: Can be write-protected by password.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
3Eh	EE Data	R/WP		EEDATA								
3EN	Reset		0	0	0	0	0	0	0	0		
Bit	Symbol		Value			I	Description	ı				
7:0	EEDATA		00h to Data from direct read or for direct write to one EEPROM Memory byte. FFh – Default value = 00h									

3Fh – EE Command

This register must be written with specific values, in order to Update or Refresh all (readable/writeable) Configuration EEPROM registers or to read or write from/to a single EEPROM Memory byte.

Before using this commands, the automatic refresh function has to be disabled (EERD = 1) and the busy status bit EEbusy has to indicate, that the last transfer has been finished (EEbusy = 0). The EEF flag can be used for EEPROM write access failure detection. Other values, unless 11h, 12h, 21h or 22h, should not be entered. Write only. Returns 0 when read. Can be write-protected by password.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	EE Command	WP				EEC	CMD			
3Fh	Reset	•	0	0	0	0	0	0	0	0
Bit	Symbol		Value			I	Descriptio	n		
7:0	EECMD		11h 12h 21h 22h	Other value UPDATE When wri (address Configura REGISTE REFRES When wri are read bytes (ad RAM byte WRITE T When wri written (s EEADDR and User READ OI When wri specified byte. For	es, unless (ALL CONI ting a value COh to CAH ation EEPRO ERS. H (ALL COI ting a value and copied dress COh t as are writte O ONE EEI ting a value tored) into t byte. For C <u>EEPROM I</u> NE EEPRO ting a value in EEADDF	OM Memo 11h, 12h, 2 FIGURATIC of 11h, da) are writte OM bytes. S WFIGURAT of 12h, da of 12h, da the cor to CAh). Fu PROM BYT of 21h, da he EEPRO Configuratio oytes (addr M BYTE (E of 22h, da R byte are ri- on EEPRO	ry (see EEF 1h or 22h, s N RAM → ta from all (n (stored) i See also US ION EEPR ta from all (responding nctions bec TE (EEDAT, ta from the M byte with n EEPROM → EPROM → ta from the ead and co M bytes (ac	PROM REA should not be EEPROM). Configuration to the correst SE OF THE OM \rightarrow RAM Configuration Con	n RAM mir esponding CONFIGU 1). n EEPROM ion RAM m as soon as EEPROM) RAM) byte : s specified dress C0h t RAM)). byte with th e EEDATA	RATION A bytes irror the are in the o CAh) e address (RAM)

3.19. RAM REGISTERS

40h to 4Fh – User RAM

16 Bytes of User RAM for general purpose storage are provided. For example, they can be used to store system status bytes.

Read: Always readable. Write: Can be write-protected by password.

Address	I	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
40h to 4Fl	ι	User RAM	R/WP		16	Bytes of L	Jser RAM.	 Default va 	alues are OC)h	

3.20. CONFIGURATION EEPROM WITH RAM MIRROR REGISTERS

All **Configuration EEPROM** registers at addresses C0h to CAh are memorized in the EEPROM and mirrored in the RAM. Functions become active, with the exception of the EEPROM password EEPW, as soon as the RAM mirror bytes are written. See also USE OF THE CONFIGURATION REGISTERS.

3.20.1. EEPROM PMU REGISTER

C0h – EEPROM Power Management Unit (PMU)

This register is used to control the switchover function and the trickle charger with charge pump and it holds the NCLKE bit (see PROGRAMMABLE CLOCK OUTPUT).

After a Power up and the first refreshment time $t_{PREFR} = ~66$ ms, the EEPROM PMU register value is copied from the EEPROM to the corresponding RAM mirror. The default value preset on delivery is 00h. Read: Always readable. Write: Can be write-protected by password.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
001	EEPROM PMU	R/WP	-	NCLKE	BS	SM	тс	CR	Т	СМ	
C0h	Default value on de	elivery	0	0	0	0	0	0	0	0	
Bit	Symbol		Value				Descriptior	า			
7	-		0	Bit not im	plemented.	Will return	a 0 when re	ead.			
6	NCLKE		0	CLKOUT CLKOUT	(syr is directly e pin is LOW	nchronized enabled. – I , if not ena	COGRAMMABLE CLOCK OUTPUT) d enable/disable) Default value on delivery abled by the interrupt driven clock output				
			,	(see A AUTOMATIO d/write from/ function	B UTOMATIO C BACKUP FRICKLE C to the EEP n by setting EEPROM	ackup Swit C BACKUP SWITCHC HARGER ROM, the u the BSM f A READ/W	WITH CHAF iser has to c ield to 00 or RITE CONE	le VER FUNC RUPT FUI RGE PUMP disable the 11 (see ro DITIONS)	TION, NCTION ar) Backup Sv	nd	
5:4	BSM	BSM			he Direct S er when V _{DI} _{ВАСКИР})).	witching M _D < V _{BACKUP}	value on de ode (DSM). (PMU selec		the greate	r voltage	
			10	when $V_{BACKUP} < V_{DD} < V_{TH:LSM}$ (2.0 V), PM and selects V_{DD} .							
			11	Switchove	er Disabled						
				(se			Series Resis R WITH CH		MP)		
	705		00	TCR 1 kΩ	Ω – Default	value on de	elivery				
3:2	TCR		01	TCR 2 kΩ	2						
			10	TCR 7 kΩ	2						
			11	TCR 11 k	Ω						
			Tri	ickle Charge					IARGE PU	MP)	
			00			 Default va 	lue on deliv	very			
1:0	тем	ТСМ		01	TCM 1.75	In DSM M In LSM Mo	ode (BSM =	= 01), V _{DD} vo : 10), the int / is selected	ernal regul	ated voltag	
			10	TCM 3 V •			: 10), the int 95 V is sele		je pump vo	oltage wit	
		 TCM 4.4 V In LSM Mode (BSM = 10), the internal charge pump voltage the typical value of 4.35 V is selected. 							ltage with		

3.20.2. EEPROM OFFSET REGISTER

C1h – EEPROM Offset

This register holds the OFFSET value for aging correction of the frequency and the PORIE and VLIE bits to enable interrupt output.

After a Power up and the first refreshment time $t_{PREFR} = ~66$ ms, the EEPROM Offset register value is copied from the EEPROM to the corresponding RAM mirror. The default value preset on delivery is 00h. Read: Always readable. Write: Can be write-protected by password.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
C1h	EEPROM Offset	R/WP	PORIE	VLIE			OFF	SET			
CIII	Default value on de	livery	0	0	0	0	0	0	0	0	
Bit	Symbol		Value			l	Description	า			
				1	POWER (On Reset I ON RESET	INTERRUF	PT FUNCTI	,		
7	PORIE		0	or the sig	nal is cance	generated	[•] pin. – Defa	ault value o	n delivery		
			1	occurs. T	pt signal is his setting i cancellatio	generated is retained u on).	on INT pin Intil the PO	when a Po RF flag is c	wer On Res leared to 0	set (no	
				Voltage Low Interrupt Enable bit (see VOLTAGE LOW INTERRUPT FUNCTION) No interrupt signal is generated on INT pin when a Voltage Low even							
6	VLIE		0	No interrupt signal is generated on INT pin when a Voltage Low even						elivery	
			1	occurs. T		s retained u					
5:0	OFFSET		-32 to +31	number w range is r to 1/(3276	/ith a range oughly ±7.4	ffective freq of -32 to +3 ppm). The 0.2384 ppm. DN).	31 adjustme	ent steps (r value of or	naximum c e LSB corr	orrection espond	
OFFSET	Unsigned	decimal			igned deci o's comple			Offset va	alue in ppr	n ^(*)	
011111	31				31				7.391		
011110	30)			30				7153		
	:								:		
000001	1				1				0.238		
000000 (default)	0				0				0.000		
111111	63				-1				0.238		
111110	62		-2 -0.477								
:	:		: :								
100001	33	33			-31 -7.391						
100000	32		-32 -7.629								

EEPROM Offset register (see AGING CORRECTION).

3.20.3. EEPROM CLKOUT REGISTERS

The registers EEPROM Clkout 1 and EEPROM Clkout 2 hold the values HFD [12:0], OS and FD that define the frequency to be output. After a Power up and the first refreshment time $t_{PREFR} = ~66$ ms, the EEPROM Clkout 1 and EEPROM Clkout 2 values are copied from the EEPROM to the corresponding RAM mirror.

The programmable square wave output is available at CLKOUT pin. Operation can be activated directly by setting NCLKE bit to 0 (EEPROM C0h) or by an interrupt function (see PROGRAMMABLE CLOCK OUTPUT).

C2h – EEPROM Clkout 1

This register holds the lower 8 bits of the HFD value. The default value preset on delivery is 00h (8192 Hz). Read: Always readable. Write: Can be write-protected by password.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
C2h	EEPROM Clkout 1	R/WP				HFD	D [7:0]			
	Default value on del	ivery	0	0	0	0	0	0	0	0
Bit	Symbol		Value				Descriptio	n		
7:0	HFD [7:0]		00h to FFh	CLKOUT	Frequency	Selection i	n HF mode	(lower 8 bi	ts). See ne	xt table.

C3h – EEPROM Clkout 2

This register holds the Oscillator Selection bit, the FD value and the upper 5 bits of the HFD value. The default value preset on delivery is 00h (XTAL selected, 32.768 kHz).

Read: Always readable. Write: Can be write-protected by password.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
C3h	EEPROM Clkout 2	R/WP	OS	F	D	HFD [12:8]				
	Default value on de	livery	0	0	0	0	0	0	0	0
Bit	Symbol		Value				Descriptio	n		
				Osc	illator Sele	ction (syncl	nronized os	cillator char	nge)	
7	OS									
		1 HF mode is selected.								
6:5	FD									
4:0	HFD [12:8]		00000 to 11111	CLKOUT	Frequency	Selection i	n HF mode	(upper 5 bi	ts). See ne:	xt table.
FD value	CLKOUT Freq	uency Se	lection in)	(TAL mode			s	TOP bit		
00	32.768 kHz – Defau	ilt value or	n delivery		No	effect				
01	1024 Hz ^{(1) (2)}						4 11-2 -1-21			
10	64 Hz ^{(1) (2)}							output is st	opped. CL	1001
11	1 Hz ^{(1) (2)}	remains HIGH or LOW (9)								

(2) Current period duration of 1024 Hz to 1 Hz clock pulses are affected when writing to the Seconds register or when the ESYN bit is 1 in case of an External Event detection on EVI pin.

⁽³⁾ 1024 Hz, 64 Hz and 1 Hz are synchronously turned on and off by the STOP bit.

HFD [12:0] value	HFD in decimal	HFD + 1	CLKOUT Frequency Selection in HF mode = (HFD + 1) × 8.192 kHz	STOP bit
0000000000000	0	1	8.192 kHz – Default value on delivery	
000000000001	1	2	16.384 kHz	
000000000010	2	3	24.576 kHz	
:	:		:	No effect. (1) (2)
1100011001011	6347	6348	52.002816 MHz	
:	:		:	
1111111111110	8190	8191	67.100672 MHz	
1111111111111	8191	8192	67.108864 MHz	

HFD (13 bits), 8,192 kHz to 67,109 MHz in 8,192 kHz steps:

⁽¹⁾ Clock pulses from HF mode are not affected by compensation pulses (no TEMPERATURE COMPENSATION and no AGING CORRECTION).

(2) Current period duration of clock pulses in HF mode are not affected when writing to the Seconds register nor when the ESYN bit is 1 in case of an External Event detection on EVI pin.

3.20.4. EEPROM TEMPERATURE REFERENCE REGISTERS

The registers EEPROM TReference 0 and EEPROM TReference 1 hold the 16-bit Temperature Reference value TREF in two's complement format that is used to calibrate the readable Temperature Value TEMP in registers 0Eh and 0Fh. TREF defines the calibration steps that can be calculated. Each step introduces a deviation of 0.0078125°C. The preconfigured (Factory Calibrated) TREF value may be changed by the user (see TEMPERATURE REFERENCE ADJUSTMENT).

C4h – EEPROM TReference 0

This register holds the lower 8 bits of the 16-bit TREF value. The preconfigured (Factory Calibrated) TREF value may be changed by the user. After a Power up and the first refreshment time t_{PREFR} = ~66 ms, the EEPROM TReference 0 value is copied from the EEPROM to the corresponding RAM mirror.

Read: Always readable. Write: Can be write-protected by password.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
C4h	EEPROM TReference 0	R/WP				TRE	F [7:0]			
	Default value on del	ivery	Preconfigured (Factory Calibrated)							
Bit	Symbol		Value				Descriptio	n		
7:0	TREF [7:0]		00h to FFh Lower 8 bits of the TREF value.							

C5h – EEPROM TReference 1

This register holds the upper 8 bits of the 16-bit TREF value. The preconfigured (Factory Calibrated) TREF value may be changed by the user. After a Power up and the first refreshment time $t_{PREFR} = -66$ ms, the EEPROM TReference 1 value is copied from the EEPROM to the corresponding RAM mirror.

Read: Always readable. Write: Can be write-protected by password.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
C5h	EEPROM TReference 1	R/WP				TRE	⁼ [15:8]			
	Default value on de	ivery	Preconfigured (Factory Calibrated)							
Bit	Symbol		Value				Descriptio	n		
7:0	TREF [15:8]		00h to FFh Upper 8 bits of the TREF value.							

3.20.5. EEPROM PASSWORD REGISTERS

After a Power up and the first refreshment time t_{PREFR} = ~66 ms, the EEPROM Password registers 0 to 3 with the 32bit EEPROM Password are copied from the EEPROM to the corresponding RAM mirror. Note that the active zone for EEPW is the EEPROM. The default values preset on delivery are 00h.

C6h – EEPROM Password 0

Bit 0 to 7 from 32-bit EEPROM Password.

RAM mirror is Write only. Returns 0 when read. EEPROM can be READ when Unlocked.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
C6h	EEPROM Password 0	*WP EEPW [7:0]										
	Default value on de	livery	0	0	0	0	0	0	0 0 (
Bit	Symbol	Symbol Value Description										
7:0	EEPW [7:0]		00h to FFh	Bit 0 to 7 from 32-bit EEPROM Password								
* EEPW registers: R	AM mirror is Write only	. Returns	0 when rea	d. EEPRON	/I can be RI	EAD when	Unlocked.					

C7h – EEPROM Password 1

Bit 8 to 15 from 32-bit EEPROM Password. RAM mirror is Write only. Returns 0 when read. EEPROM can be READ when Unlocked.

Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
EEPROM Password 1	*WP	EEPW [15:8]								
Default value on de	livery	y 0 0 0 0 0 0 0						0	0	
Symbol	Value			I	Description	า				
EEPW [15:8]		00h to FFh	Bit 8 to 15 trom 32-bit EEPROW Password							
	EEPROM Password 1 Default value on del Symbol	EEPROM Password 1 *WP Default value on delivery Symbol	EEPROM *WP Password 1 *WP Default value on delivery 0 Symbol Value EEPW/[15:8] 00h to	EEPROM *WP Password 1 *WP Default value on delivery 0 Symbol Value EEPRW [15:8] 00h to	EEPROM *WP Password 1 *WP Default value on delivery 0 0 Symbol Value EEPRW [15:8] 00h to	EEPROM Password 1 *WP EEPW Default value on delivery 0 0 0 Symbol Value I EEPW/[15:8] 00h to Bit 8 to 15 from 32-bit EEPROM	EEPROM Password 1 *WP EEPW [15:8] Default value on delivery 0 0 0 0 Symbol Value Description EEPW [15:8] 00h to Bit 8 to 15 from 32-bit EEPROM Password	EEPROM Password 1 *WP EEPW [15:8] Default value on delivery 0 0 0 0 0 Symbol Value Description EEPW [15:8] 00h to Bit 8 to 15 from 32-bit EEPROM Password Password	EEPROM Password 1 *WP EEPW [15:8] Default value on delivery 0 0 0 0 0 Symbol Value Description EEPW [15:8] 00h to Bit 8 to 15 from 32-bit EEPROM Password Password	

EEPVV registers: RAW mirror is vvrite only. Returns 0 when read. E

C8h – EEPROM Password 2

Bit 16 to 23 from 32-bit EEPROM Password.

RAM mirror is Write only. Returns 0 when read. EEPROM can be READ when Unlocked.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
C8h	EEPROM Password 2	*WP		EEPW [23:16]								
	Default value on de	livery	0	0	0	0	0	0	0 0			
Bit	Symbol Value Description											
7:0	EEPW [23:16]		00h to FFh	Bit 16 to 23 from 32-bit EEPROM Password								
* EEPW registers: R	AM mirror is Write only	. Returns	0 when rea	d. EEPRON	I can be RI	EAD when	Unlocked.					

C9h – EEPROM Password 3

Bit 24 to 31 from 32-bit EEPROM Password. RAM mirror is Write only. Returns 0 when read. EEPROM can be READ when Unlocked.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
C9h	EEPROM Password 3	*WP	EEPW [31:24]							
	Default value on de	livery	0 0 0 0 0 0 0						0	0
Bit	Symbol		Value	alue Description						
7:0	EEPW [31:24]		00h to FFh	Bit 24 to 31 from 32-bit EEPROM Password						
* EEPW registers: RAM mirror is Write only. Returns 0 when read. EEPROM can be READ when Unlocked.										

3.20.6. EEPROM PASSWORD ENABLE REGISTER

After a Power up and the first refreshment time $t_{PREFR} = ~66$ ms, the Password Enable value EEPWE is copied from the EEPROM to the corresponding RAM mirror. The default value preset on delivery is 00h.

CAh – EEPROM Password Enable

RAM mirror is Write only. Returns 0 when read.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CAh	EEPROM Password Enable	WP	EEPWE							
	Default value on del	ivery	0	0	0	0	0	0		0
Bit	Symbol		Value Description							
				EEPROM Password Enable						
7:0	7:0 EEPWE			Password function disabled. When writing a value not equal 255, the password function is disabled. – 00h is the default value preset on delivery						
			255	When wri	I function en ting a value nter the 32-	of 255, the		registers (3	can be	

3.21.USER EEPROM

CBh to EAh – User EEPROM

32 Bytes of User EEPROM for general purpose storage are provided. Read: Always readable. Write: Can be write-protected by password.

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CBh to EAh	User EEPROM	R/WP	32 B	ytes of non-	-volatile Use	er EEPRON	И. – Default	t values on	delivery are	e 00h

3.22. REGISTER RESET VALUES SUMMARY

Reset values; RAM, Address 00h to 25h:

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit
00h	100 th Seconds	R	0	0	0	0	0	0	0	0
01h	Seconds	R/WP	0	0	0	0	0	0	0	0
02h	Minutes	R/WP	0	0	0	0	0	0	0	0
03h	Hours	R/WP	0	0	0	0	0	0	0	0
04h	Weekday	R/WP	0	0	0	0	0	0	0	0
05h	Date	R/WP	0	0	0	0	0	0	0	1
06h	Month	R/WP	0	0	0	0	0	0	0	1
07h	Year	R/WP	0	0	0	0	0	0	0	0
08h	Minutes Alarm	R/WP	0	0	0	0	0	0	0	0
09h	Hours Alarm	R/WP	0	0	0	0	0	0	0	0
0Ah	Date Alarm	R/WP	0	0	0	0	0	0	0	0
0Bh	Timer Value 0	R/WP	0	0	0	0	0	0	0	0
0Ch	Timer Value 1	R/WP	0	0	0	0	0	0	0	0
0Dh	Status	R/WP	0	0	0	0	0	Х	1	0
0Eh	Temperature LSBs	R/WP		0h -	→ Xh		0	$1 \rightarrow 0$	0	0
0Fh	Temperature MSBs	R				00h -)	XXh	•		
10h	Control 1	R/WP	0	0	0	0	0	0	0	0
11h	Control 2	R/WP	0	0	0	0	0	0	0	0
12h	Control 3	R/WP	0	0	0	0	0	0	0	0
13h	Time Stamp Contr.	R/WP	0	0	0	0	0	0	0	0
14h	Clock Int. Mask	R/WP	0	0	0	0	0	0	0	0
15h	EVI Control	R/WP	0	0	0	0	0	0	0	0
16h	TLow Threshold	R/WP	0	0	0	0	0	0	0	0
17h	THigh Threshold	R/WP	0	0	0	0	0	0	0	0
18h	TS TLow Count	R	0	0	0	0	0	0	0	0
19h	TS TLow Seconds	R	0	0	0	0	0	0	0	0
1Ah	TS TLow Minutes	R	0	0	0	0	0	0	0	0
1Bh	TS TLow Hours	R	0	0	0	0	0	0	0	0
1Ch	TS TLow Date	R	0	0	0	0	0	0	0	0
1Dh	TS TLow Month	R	0	0	0	0	0	0	0	0
1Eh	TS TLow Year	R	0	0	0	0	0	0	0	0
1Fh	TS THigh Count	R	0	0	0	0	0	0	0	0
20h	TS THigh Seconds	R	0	0	0	0	0	0	0	C
21h	TS THigh Minutes	R	0	0	0	0	0	0	0	0
22h	TS THigh Hours	R	0	0	0	0	0	0	0	0
23h	TS THigh Date	R	0	0	0	0	0	0	0	0
24h	TS THigh Month	R	0	0	0	0	0	0	0	0
25h	TS THigh Year	R	0	0	0	0	0	0	0	0

Address Function Conv. Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 26h R TS EVI Count 0 0 0 0 0 0 0 Х 27h TS EVI 100th Sec. R 0 0 0 0 0 0 0 0 28h TS EVI Seconds R 0 0 0 0 0 0 0 0 29h TS EVI Minutes R 0 0 0 0 0 0 0 0 TS EVI Hours R 0 0 0 2Ah 0 0 0 0 0 TS EVI Date 2Bh R 0 0 0 0 0 0 0 Х 2Ch TS EVI Month R 0 0 0 0 0 0 0 Х 2Dh TS EVI Year R 0 0 0 0 0 0 0 0 2Eh to 38h RESERVED Prot. 00h W 0 0 0 0 39h Password 0 0 0 0 0 W 3Ah Password 1 0 0 0 0 0 0 0 0 3Bh Password 2 W 0 0 0 0 0 0 0 0 W 0 3Ch Password 3 0 0 0 0 0 0 0 EE Address 3Dh R/WP 1 1 0 0 0 0 0 0 3Eh EE Data R/WP 0 0 0 0 0 0 0 0 3Fh EE Command WP 0 0 0 0 0 0 0 0 User RAM R/WP 00h 40h to 4Fh (16 Bytes) 50h to BFh RESERVED Prot. 00h Prot. CBh to FFh RESERVED 00h X = not defined, or defined under conditions.

Reset values; RAM, Address 26h to FFh:

RV-3032-C7

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
C0h	EEPROM PMU	R/WP	0	0	0	0	0	0	0	0	
C1h	EEPROM Offset	R/WP	0	0	0	0	0	0	0	0	
C2h	EEPROM Clkout 1	R/WP	0	0	0	0	0	0	0	0	
C3h	EEPROM Clkout 2	R/WP	0	0	0	0	0	0	0	0	
C4h	EEPROM TReference 0	R/WP		Preconfigured (Factory Calibrated)							
C5h	EEPROM TReference 1	R/WP	Preconfigured (Factory Calibrated)								
C6h	EEPROM Password 0	*WP	0	0 0 0 0 0 0 0						0	
C7h	EEPROM Password 1	*WP	0	0	0	0	0	0	0	0	
C8h	EEPROM Password 2	*WP	0	0	0	0	0	0	0	0	
C9h	EEPROM Password 3	*WP	0	0	0	0	0	0	0	0	
CAh	EEPROM PW Enable	WP	0	0	0	0	0	0	0	0	

Default values on delivery; Configuration EEPROM with RAM mirror, Address C0h to CAh:

Default values on delivery; User EEPROM, Address CBh to EAh:

Address	Function	Conv.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CBh to EAh	User EEPROM (32 Bytes)	R/WP				00	Dh			

RV-3032-C7 reset values after power on (RAM) and default values on delivery (EEPROM) sorted by functions:

RAM, reset values:

AIVI, I	esel values.			
	Time (hh:mm:ss.00)	=	00:00:00.00	(100 th Seconds = read only)
	Date (YY-MM-DD)	=	00-01-01	
	Weekday	=		
	TS TLow Count	=	0	(read only)
	TS TLow Time (hh:mm:ss)			(read only)
		=		
	TS TLow Date (YY-MM-DD)	=	00-00-00	(read only)
	TS THigh Count	=	0	(read only)
	TS THigh Time (hh:mm:ss)	=		(read only)
	TS THigh Date (YY-MM-DD)	=	00-00-00	(read only)
	TS EVI Count	=	Х	(read only)
			(if $X = 1$. LOW	level was detected. Else $X = 0$)
	TS EVI Time (hh:mm:ss.00)	=	00:00:00.00	(read only)
	TS EVI Date (YY-MM-DD)	=	00 XXX XXX	(read only)
		-		-01, LOW level was detected. Else XX-XX = 00-00)
	Alarm function			
	Alarm function	=		hh:mm = 00:00 and alarm DD = 00 selected
	Timer function	=		er Clock Frequency = 4096 Hz
	Update function	=		nd update is selected
	Temperature value TEMP	=	$000h \rightarrow XXXh$	(read only)
	Temperature Low function	=	disabled, TLov	v Threshold = 0°C
	Temperature High function	=	disabled, THig	h Threshold = 0°C
	External Event function	=		d, falling edge is regarded as External Event on pin EVI
	Time Stamp Temp. Low	=		event is selected
	Time Stamp Temp. High	=		event is selected
	Time Stamp Ext. Event			d, first event is selected
		=	•	
	Backup Switchover Interrupt	=	disabled	(for enabling, see EEPROM)
	Interrupts	=	•	l enabled interrupts), see also Configuration EEPROM
	EEPROM Memory Refresh	=		
	EEbusy status bit	=	$1 \rightarrow 0$ (1 for t	he time $t_{PREFR} = -66$ ms, then it cleared to 0 automatically)
			(read only)	
	STOP bit function	=	disabled (pr	escaler not stopped)
	ESYN bit function	=		synchronization by External Event)
	THF Flag	=	0	
	TLF Flag	=	0	
	UF Flag	_	0	
			-	
	TF Flag	=	0	
	AF Flag	=	0	
	EVF Flag	=	· ·	when LOW level was detected on EVI pin, else $X = 0$)
	PORF Flag	=	1 (can be	e cleared by writing 0 to the bit)
	VLF Flag	=	0	
	EEF Flag	=	0	
	CLKF Flag	=	0	
	BSF Flag	=	0	
	Interrupt Controlled Clock	=	-	terrupt source selected, CLKOUT delay disabled,
		_		$_{\text{CLK}}$ = 1.4 ms selected, no interrupt delay
	Bassword DW	_		
	Password PW	=	0000000h	(write only)
	EE Address	=	C0h	(points to EEPROM PMU)
	EE Data	=	00h	
	EE Command	=	00h	(write only)
	User RAM	=	00h	(16 Bytes)

Configuration EEPROM with RAM mirror, default values on delivery:

J		
Backup Switchover function	=	disabled (for Interrupt, see RAM)
Power On Reset Interrupt	=	disabled
Voltage Low Interrupt	=	disabled
Interrupts	=	disabled (EEPROM enabled interrupts), see also RAM
Trickle Charger Mode	=	disabled, TCR 1 k Ω is selected
OFFSET value	=	0 (6 bits)
CLKOUT	=	enabled, XTAL mode selected, F = 32.768 kHz
TREF value	=	Preconfigured Value (16 bits) (may be changed by the user)
EEPROM Password EEPW	=	00000000h (write only) (EEPROM readable when unlocked)
EEPROM Password Enable	=	disabled (write only)

User EEPROM, default values on delivery:

User EEPROM (32 Bytes)	=	00h
------------------------	---	-----

4. DETAILED FUNCTIONAL DESCRIPTION

4.1. POWER ON RESET (POR)

The power on reset (POR) is generated at start-up (see POWER ON RESET INTERRUPT FUNCTION). All RAM registers including the Counter Registers are initialized to their reset values and the Configuration EEPROM registers with the RAM mirror registers are set to their preset default values. At power up a refresh of the RAM mirror values by the values in the Configuration EEPROM is automatically generated. The time of this first refreshment is $t_{PREFR} = ~66$ ms. The EEbusy status bit in the Temperature LSBs register (0Eh) can be used to monitor the status of the refreshment (see REGISTER RESET VALUES SUMMARY).

The Power On Reset Flag PORF indicates the occurrence of a voltage drop of the internal power supply voltage below V_{POR} threshold needed to cause the generation of the device POR. A PORF value of 1 indicates that the voltage had dropped below the threshold level V_{POR} and that the time information is corrupted. The value 1 is retained until a 0 is written by the user.

When PORIE bit (EEPROM C1h) is set and the PORF flag was cleared beforehand, an interrupt signal on INT pin can be generated when a Power On Reset occurs (see POWER ON RESET INTERRUPT FUNCTION)

4.2. AUTOMATIC BACKUP SWITCHOVER FUNCTION

Basic Hardware Definitions:

- The RV-3032-C7 has two power supply pins.
 - V_{DD} is the main power supply input pin.
 - \circ V_{BACKUP} is the backup power supply input pin.
- VTH:LSM (typical value 2.0 V) is the backup switchover threshold voltage in Level Switching Mode.
- A debounce logic provides a debounce time t_{DEB} with a maximum value of 1 ms (when internal voltage was between V_{LOW} (1.2 V) and 1.0 V, the maximum value is one second), which will filter V_{DD} oscillation when switchover function will switch back from V_{BACKUP} to V_{DD}. I²C access is again possible in VDD Power state after the debounce time t_{DEB}.

Switchover Modes:

The RV-3032-C7 has three backup switchover modes. The desired mode can be selected by the BSM field in the Configuration EEPROM, see EEPROM PMU REGISTER:

- BSM = 00 Switchover disabled (default value on delivery), see SWITCHOVER DISABLED.
- BSM = 01 Direct Switching Mode (DSM): when V_{DD} < V_{BACKUP}, switchover occurs from V_{DD} to V_{BACKUP} without requiring V_{DD} to drop below V_{TH:LSM} (2.0 V), see DIRECT SWITCHING MODE (DSM).
- BSM = 10 Level Switching Mode (LSM): when V_{DD} < V_{TH:LSM} (2.0 V) AND V_{BACKUP} > V_{TH:LSM} (2.0 V), switchover occurs from V_{DD} to V_{BACKUP}, see LEVEL SWITCHING MODE (LSM).
 - If $V_{BACKUP} < V_{TH:LSM}$, the module is in DSM and the power supply is V_{DD} .
 - BSM = 11 Switchover disabled, see SWITCHOVER DISABLED.

Function Overview:

When a valid backup switchover condition occurs (Direct or Level Switching Mode) and the internal power supply switches to the V_{BACKUP} voltage (VBACKUP Power state) the following sequence applies:

- The Backup Switch Flag BSF is set and, if BSIE bit is 1 (register 12h), an interrupt will be generated on INT pin and remains as long as BSF is not cleared to 0 (can be cleared when back in VDD Power state). If BSIE is 0 no interrupt will be generated (see AUTOMATIC BACKUP SWITCHOVER INTERRUPT FUNCTION).
 - The I²C-bus interface is automatically disabled (high impedance) and reset.
- CLKOUT pin is held LOW.

For the VBACKUP Power State, the following applies:

- Temperature sensing and temperature compensation remains active.
- EVI input pin remains active for interrupt generation, interrupt driven clock output (clock output when back in VDD Power state) and time stamp function.
- The interrupt output pin INT remains active for any previously configured interrupt condition.
- Any previously configured interrupt selected in the Clock Interrupt Mask Register (14h) can be used to enable the clock output on CLKOUT pin automatically (clock output when back in VDD Power state) (see AUTOMATIC BACKUP SWITCHOVER INTERRUPT FUNCTION).
- The Time Stamp functions remain active for any previously configured functions (the Time Stamp registers can be read when back in VDD Power state).

Note: After the device has switched back from VBACKUP Power state to VDD Power state the I²C interface has to be reinitialized by sending a STOP followed by a START (see also I²C-BUS IN SWITCHOVER CONDITION).

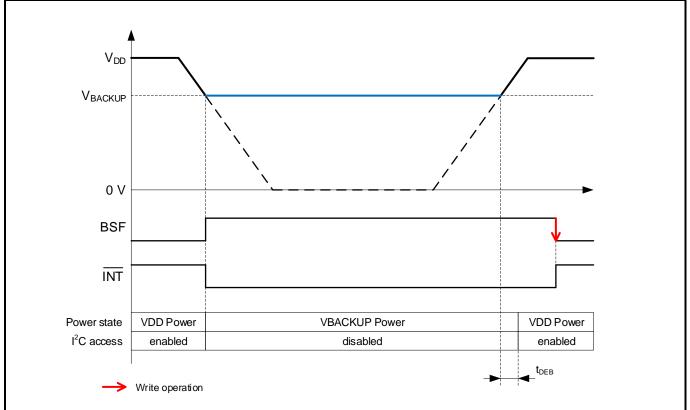
4.2.1.SWITCHOVER DISABLED

The switchover function is disabled when BSM field (EEPROM C0h) is set to 00 or 11 (BSM = 00 is the default value on delivery).

- Used when only one power supply is available (device is always in VDD Power state). The power supply is applied on V_{DD} pin and the V_{BACKUP} pin must be tied to V_{SS} with a 10 kΩ resistor. The Backup Switch Flag BSF is always logic 0.
- 2. Used when V_{DD} is turned off and V_{BACKUP} is still present and the device must not draw any current from the backup source ($I_{BACKUP} = 0$ nA). The backup source on V_{BACKUP} pin is in standby mode until the device is powered up again from main supply V_{DD} and a switchover mode is selected (see also TYPICAL CHARACTERISTICS).

When the device is first powered up from the backup supply (V_{BACKUP}) but without a main supply (V_{DD}), switchover is also disabled and the backup source is automatically in standby mode ($I_{BACKUP} = 0$ nA).

4.2.2.DIRECT SWITCHING MODE (DSM)


This mode is selected with BSM = 01 (EEPROM C0h).

- If $V_{DD} > V_{BACKUP}$ the internal power supply is V_{DD} .
- If VDD < VBACKUP the internal power supply is VBACKUP.

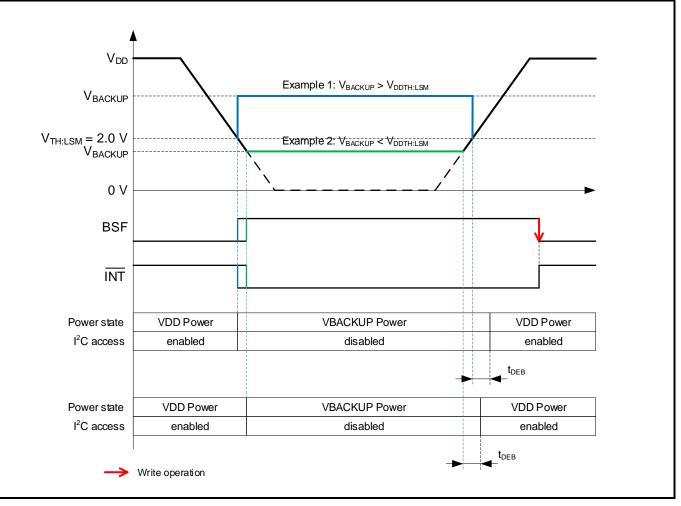
The Direct Switching Mode is useful in systems where V_{DD} is normally higher than V_{BACKUP} (for example, V_{DD} = 5.0 V, V_{BACKUP} = 3.5 V). If the V_{DD} and V_{BACKUP} values are similar (for example, V_{DD} = 3.3 V, V_{BACKUP} \geq 3.0 V), the Direct Switching Mode is not recommended as this can lead to unnecessary switching.

In Direct Switching Mode, the power consumption is reduced compared to the Level Switching Mode (LSM) because V_{DD} is not monitored and not compared to the internal threshold voltage $V_{TH:LSM} = 2.0$ V (typical I_{DD:DSM} = 210 nA). See also OPERATING PARAMETERS and TYPICAL CHARACTERISTICS.

Note that the circuit needs in worst case 2 ms to react when changing from disabled switchover to DSM.

Backup switchover in Direct Switching Mode and Backup Switchover Interrupt enabled, BSIE = 1 (register 12h):

4.2.3.LEVEL SWITCHING MODE (LSM)

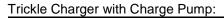

This mode is selected with BSM = 10 (EEPROM C0h).

- If $V_{DD} > V_{TH:LSM}$ (2.0 V), the internal power supply is V_{DD} .
- If V_{DD} < V_{TH:LSM} (2.0 V) AND V_{BACKUP} > V_{TH:LSM} (2.0 V), the internal power supply is V_{BACKUP}.

In Level Switching Mode, the power consumption is slightly increased compared to the Direct Switching Mode (DSM) because V_{DD} is monitored and compared to the threshold voltage $V_{TH:LSM} = 2.0$ V (typical I_{DD:LSM} = 230 nA). See also OPERATING PARAMETERS and TYPICAL CHARACTERISTICS.

Note that the circuit needs in worst case 10 ms to react when changing from disabled switchover to LSM.

Backup switchover in Level Switching Mode and Backup Switchover Interrupt enabled, BSIE = 1 (register 12h):



4.3. TRICKLE CHARGER WITH CHARGE PUMP

The device supporting the V_{BACKUP} pin include a trickle charging circuit with charge pump which allows a battery or supercapacitor connected to the V_{BACKUP} pin to be charged direct from the power supply connected to the V_{DD} pin or by the internal regulated voltage TCM 1.75 V (for TDK's CeraCharge[™]) or by one of the internal charge pump voltages TCM 3 V or TCM 4.4 V. See figure below.

In the register EEPROM C0h the Trickle Charger with Charge Pump can be configured by the TCM field (default value on delivery is "Trickle Charger off") and by the TCR field for selecting a series current limiting resistor (default value on delivery is 1 k Ω). A schottky diode, with a typical voltage drop of 0.25 V, is inserted in the charging path. The internal charge pump voltages are useful when using a supercapacitor, as it permits to charge the capacitor to a higher voltage than V_{DD}. No external components required.

Note that the Trickle Charger with Charge Pump (field TCM) works differently, depending on which switchover mode (field BSM) is selected.

The trickle charger is disabled when TCM = 00 or when Switchover function is disabled (BSM = 00 or 11) or when the device is in VBACKUP Power state.

4.4. PROGRAMMABLE CLOCK OUTPUT

The Oscillator Selection bit OS (EEPROM C3h) can be used to select the XTAL mode or the HF mode.

In XTAL mode (OS bit = 0) four frequencies can be output on CLKOUT pin, the frequency selection is done in the FD field (EEPROM C3h).

- 32.768 kHz; direct from Xtal oscillator, not temperature compensated and not offset compensated.
- 1024 Hz, 64 Hz, 1 Hz; divided Xtal oscillator frequencies, always temperature compensated and with aging compensation with user programmable EEPROM Offset value (EEPROM C1h).

In HF mode (OS bit = 1) frequencies from 8192 Hz to 67.109 MHz in 8192 Hz steps can be output on CLKOUT pin, the frequency selection is done in the HFD field (EEPROM C2h and C3h).

• The frequencies are not temperature compensated and not offset compensated.

CLKOUT is tied to V_{ss} in VBACKUP Power state independent of the CLKOUT configuration settings. The frequency output can be controlled directly via the I²C-bus interface commands (normal operation) or can be interrupt driven to allow waking up an external system by supplying a clock.

After POR, and if the default values on delivery in the Configuration EEPROM with RAM mirror have not changed, the 32.768 kHz frequency is output to CLKOUT pin since FD = 00, OS = 0 (EEPROM C3h) and NCLKE = 0 (EEPROM C0h). To customize these POR values, the user can change the values in the Configuration EEPROM.

See also EEPROM READ/WRITE.

4.4.1.XTAL CLKOUT FREQUENCY SELECTION

A programmable XTAL square wave is available at pin CLKOUT when OS = 0 (EEPROM C3h). Operation is controlled by the FD field (EEPROM C3h). Frequencies from 32.768 kHz (Default value on delivery) to 1 Hz can be generated for use as a system clock, microcontroller clock, input to a charge pump, or for calibration of the crystal oscillator.

Pin CLKOUT is a push-pull output that is enabled at power on (Default value on delivery). CLKOUT can be disabled by setting NCLKE bit to 1 when not enable by an Interrupt function (CLKIE = 0 and CLKF = 0). When disabled, the CLKOUT pin is LOW.

The STOP bit function can affect the CLKOUT signal depending on the selected frequency. When STOP = 1, the clock output of 1024 Hz, 64 Hz or 1 Hz are stopped (for more details, STOP BIT FUNCTION). When writing to the Seconds register or when the ESYN bit is 1 in case of an External Event detection on EVI pin

When writing to the Seconds register or when the ESYN bit is 1 in case of an External Event detection on EVI pin the current period duration of 1024 Hz to 1 Hz clock pulses are affected.

XTAL CLKOUT Frequency Selection:

FD value	CLKOUT Frequency Selection in XTAL mode	STOP bit	
00	32.768 kHz – Default value on delivery	No effect	
01	1024 Hz ^{(1) (2)}	If STOP bit = 1, the clock output is stopped. CLKOUT remains HIGH or LOW. $^{(3)}$	
10	64 Hz ^{(1) (2)}		
11	1 Hz ^{(1) (2)}		

⁽¹⁾ 1024 Hz to 1 Hz clock pulses can be affected by compensation pulses (see TEMPERATURE COMPENSATION and AGING CORRECTION).

⁽²⁾ Current period duration of 1024 Hz to 1 Hz clock pulses are affected when writing to the Seconds register or when the ESYN bit is 1 in case of an External Event detection on EVI pin.

⁽³⁾ 1024 Hz, 64 Hz and 1 Hz are synchronously turned on and off by the STOP bit.

4.4.2.HF CLKOUT FREQUENCY SELECTION

A programmable HF square wave is available at pin CLKOUT when OS = 1 (EEPROM C3h). Operation is controlled by the HFD field (EEPROM C2h and C3h). Frequencies from 8192 Hz to 67.109 MHz in 8192 Hz steps can be generated for use as a system clock, microcontroller clock or for input to a charge pump.

Pin CLKOUT is a push-pull output that is enabled at power on (Default value on delivery). CLKOUT can be disabled by setting NCLKE bit to 1 when not enable by an Interrupt function (CLKIE = 0 and CLKF = 0). When disabled, the CLKOUT pin is LOW.

HF CLKOUT Frequency Selection:

HFD [12:0] value	HFD in decimal	HFD + 1	CLKOUT Frequency Selection in HF mode = (HFD + 1) × 8.192 kHz	STOP bit	
00000000000000000	0	1	8.192 kHz – Default value on delivery	No effect. ^{(1) (2)}	
000000000001	1	2	16.384 kHz		
000000000010	2	3	24.576 kHz		
:	:		:		
1100011001011	6347	6348	52.002816 MHz		
:	:		:		
1111111111110	8190	8191	67.100672 MHz		
1111111111111	8191	8192	67.108864 MHz		
⁽¹⁾ Clock pulses from HF mode are not affected by compensation pulses (no TEMPERATURE COMPENSATION and					

(1) Clock pulses from HF mode are not affected by compensation pulses (no TEMPERATURE COMPENSATION no AGING CORRECTION).

(2) Current period duration of clock pulses in HF mode are not affected when writing to the Seconds register nor when the ESYN bit is 1 in case of an External Event detection on EVI pin.

4.4.3.CLKOUT FREQUENCY TRANSITIONS

Two applications can be considered: On the one hand the switching on and off of a preselected frequency, on the other hand the change of frequency when CLKOUT is enabled.

CLKOUT on/off (FD, HFD and OS unchanged):

- With NCLKE bit. Synchronous on/off.
 - \circ FD = 1024 Hz, turn-off delay time of between 0 and one extra period (967 µs)
 - \circ FD = 32768 Hz, turn-on delay time of about 600 µs, and turn-off delay time of about 400 µs
 - $_{\odot}$ $\,$ HFD frequencies have a turn-on delay time of 2.5 ms, and a turn-off delay time of 400 μs
- By CLKF flag. Synchronous on/off. Same behavior as with bit NCLKE.

CLKOUT frequency change with OS (FD and HFD unchanged, CLKOUT on):

- FD \rightarrow HFD. Synchronous change. About 350 µs old frequency, 2.3 ms CLKOUT = LOW, then new frequency.
- HFD → FD. Synchronous change. About 300 µs old frequency, 650 µs CLKOUT = LOW, then LOW until next positive edge of the new frequency.

Hint: Do not change the old frequency at the same time when changing OS bit (register EEPROM C3h).

CLKOUT frequency change with FD or HFD (OS unchanged, CLKOUT on):

- With FD (XTAL mode). Immediate frequency change.
- With HFD (HF mode). Immediate frequency change. Should not be applied because the new frequency is
 not stable during the first few milliseconds. The better way is to stop the clock, change the frequency, and
 start the clock again (for example, with bit NCLKE).

4.4.4.NORMAL CLOCK OUTPUT

Normal clock output is controlled by the NCLKE bit (EEPROM C0h). When NCLKE is set to 0 (default), the square wave output is enabled on the CLKOUT pin. When NCLKE bit is set to 1, the CLKOUT pin is LOW, if not enabled by the interrupt driven clock output.

4.4.5.INTERRUPT CONTROLLED CLOCK OUTPUT

To use interrupt controlled clock output, NCLKE (EEPROM C0h) has to be set to 1 (CLKOUT not directly enabled). When CLKIE bit (11h) is set to 1 the occurrence of the interrupt selected in the Clock Interrupt Mask Register 14h (CEIE, CAIE, CTIE, CUIE, CTHIE or CTLIE) allows the flag CLKF to be set and the square wave output on the CLKOUT pin. This function allows waking up an external system (MCU) by outputting a clock.

Writing 0 to CLKIE will disable new interrupts from driving frequencies on CLKOUT, but if there is already an active interrupt driven frequency output (CLKF flag is set), the active frequency output will not be stopped. When CLKF flag is cleared, the CLKOUT pin is LOW.

- An Interrupt Delay after CLKOUT-on can be enabled with bit INTDE (14h). Used when waking up an MCU.
 See INTERRUPT DELAY AFTER CLKOUT ON.
- A CLKOUT switch off delay after I²C STOP can be selected and enabled by bits CLKD and CLKDE (registers 14h and 15h). Used if the MCU wants to put itself into sleep mode. See CLKOUT OFF DELAY AFTER I2C STOP.

Caution, it is possible that the MCU can put into sleep mode without a valid interrupt function enabled that could wake it up again.

4.4.6.INTERRUPT DELAY AFTER CLKOUT ON

When using INTERRUPT CONTROLLED CLOCK OUTPUT an Interrupt Delay after CLKOUT On can be enabled with bit INTDE (14h). Used when waking up an MCU.

Applicable only when NCLKE bit (EEPROM C0h) is set to 1 (CLKOUT not directly enabled) and for all activated interrupt functions with the appropriate clock output bit in register 14h enabled (CEIE, CAIE, CTIE, CUIE, CTHIE or CTLIE).

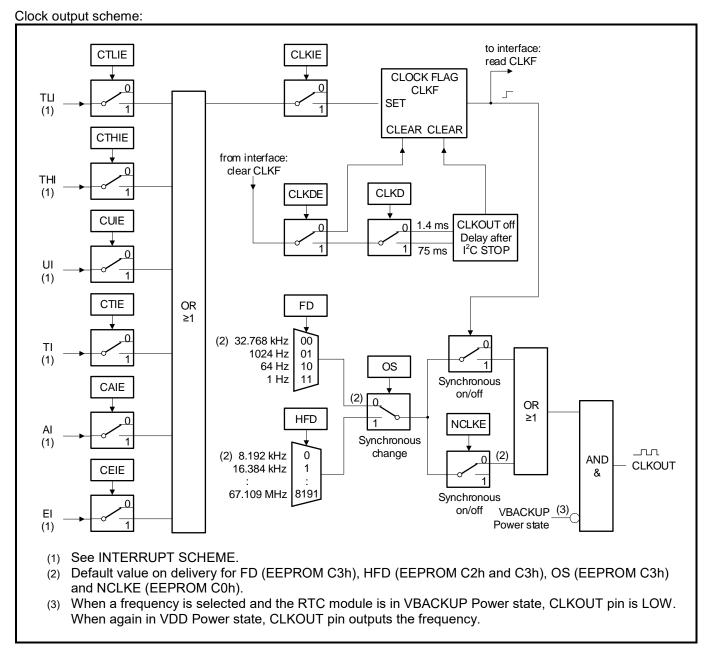
- When INTDE = 0, no delay is added (default value).
- When INTDE = 1, the delay time $t_{CLK:INT}$ of 1/256 seconds to 3/512 seconds \approx 3.9 ms to 5.9 ms is added.

Note that no delay can be created with the Periodic Countdown Timer Interrupt function (CTIE = 1) when TD = 00 (4096 Hz) is selected. With the other settings TD = 01, 10, 11 (64 Hz, 1 Hz, 1/60 Hz) the delay can be applied.

4.4.7. CLKOUT OFF DELAY AFTER I2C STOP

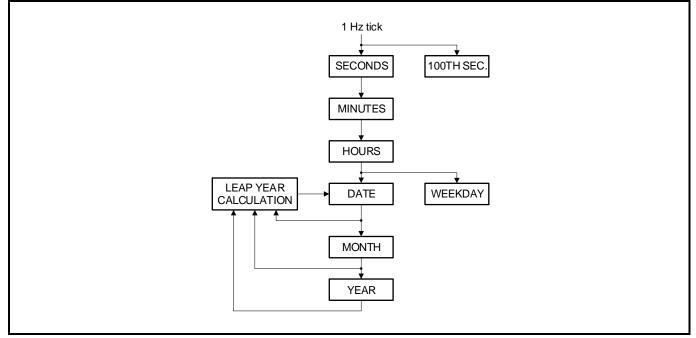
When using INTERRUPT CONTROLLED CLOCK OUTPUT a CLKOUT switch off delay after I²C STOP can be selected and enabled by bits CLKD and CLKDE (registers 14h and 15h). Used if the MCU wants to put itself into sleep mode.

Caution, it is possible that the MCU can be put into sleep mode without a valid interrupt function enabled that could wake it up again.


CLKD bit is used to select one of two delay values:

- When CLKD = 0, typical delay time t_{I2C:CLK} = 1.4 ms (default value).
- When CLKD = 1, typical delay time $t_{12C:CLK} = 75$ ms.

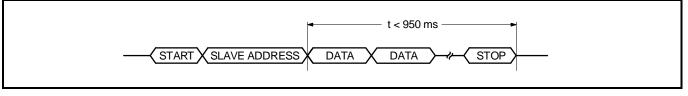
To enable the CLKOUT off Delay after I²C STOP the CLKDE bit has to be set to 1.


- When CLKDE = 0, no delay (default value).
- When CLKDE = 1, delay is enabled. The delay time is according to bit CLKD.

4.4.8.CLOCK OUTPUT SCHEME

4.5. SETTING AND READING THE TIME

Data flow and data dependencies starting from the 1 Hz clock tick:



For an I²C read/write access that lasts less than 950 milliseconds, all time counters (clock and calendar registers 00h to 07h) of the RV-3032-C7 are blocked. During this time the clock counter increment (1 Hz tick) is inhibited to allow coherent data values. One counter increment (maximum one 1 Hz tick) occurring during inhibition time is memorized and will be realized after the I²C STOP condition.

Exception: If during the inhibition time 0 and then 1 is written to the STOP bit or in case of an External Event when ESYN = 1 or a value is written to the Seconds register an eventual present memorized 1 Hz update is reset and the prescaler frequencies from 4096 Hz to 1 Hz are reset. Resetting the prescaler will have an influence on the length of the current clock period on all subsequent peripherals (clock and calendar, XTAL CLKOUT, timer clock, update timer clock, temperature sensing and EVI input filter), (see TIME SYNCHRONIZATION).

When I²C read/write access has been terminated within 950 milliseconds (t < 950 ms), the time counters are unblocked with the I²C STOP condition and a pending request to increment the time counters that occurred during read or write access is correctly applied. Maximum one 1 Hz tick can be handled (see following Figure).

Access time for read/write operations:

Because of this method, it is very important to make a read or write access in one go, that is, setting or reading 100th seconds through to year should be made in one single access. Failing to comply with this method could result in the time becoming corrupted.

4.5.1.SETTING THE TIME

During I²C write access with an access time smaller than 950 ms the time counters are blocked. After I²C STOP condition a possibly memorized 1 Hz tick is realized.

Note that when writing to the Seconds register the 100th Seconds register value is cleared to 00.

Advantage of register blocking:

- Prevents faulty writing to the clock and calendar registers during an I²C write access (no incrementing of time registers during the write access).
- After writing, one memorized 1 Hz tick is handled. Clock and calendar are updated.
- No reading is needed for control. The written data are coherent.

If the I²C write access takes longer than 950 ms the I²C bus interface is reset by the internal bus timeout function. In this case the previous time counter values are maintained, the pending 1 Hz tick is realized and the clock counter increment (1 Hz tick) continues to operate normally. Restarting of communications begins with transfer of the START condition again.

The I²C auto increment Address Pointer is not reset by the I²C STOP condition nor by the internal stop forced after timeout.

Two methods for setting the time can be distinguished:

- Setting the time registers including Seconds register. Writing to the Seconds register resets an eventual present memorized 1 Hz update and resets the prescaler frequencies from 4096 Hz to 1 Hz (synchronization).
- 2. Setting the time registers without Seconds register. A possibly memorized 1 Hz tick during write access will be realized. Old synchronicity persists.

Hint: Instead of writing to the Seconds register to synchronize the time counters the STOP Bit function or the ESYN Bit function can be applied. Both functions do not change the value in the Seconds register, but they also reset the prescaler frequencies from 4096 Hz to 1 Hz (see TIME SYNCHRONIZATION).

4.5.2.READING THE TIME

During I²C read access with an access time smaller than 950 ms, the time counters (but not the 100th Second register) are blocked. After I²C STOP condition a possibly memorized 1 Hz tick is realized.

Advantage of register blocking:

- Prevents faulty reading of the clock and calendar registers during an I²C read access (no incrementing of time registers during the read access).
- After reading, one memorized 1 Hz tick is handled. Clock and calendar are updated.
- No second reading is needed for control. The read data are coherent.

If the I²C read access takes longer than 950 ms the I²C bus interface is reset by the internal bus timeout function. In this case all data that is read has a value of FFh, the pending 1 Hz tick is realized and the clock counter increment (1 Hz tick) continues to operate normally. Restarting of communications begins with transfer of the START condition again.

The I²C auto increment Address Pointer is not reset by the I²C STOP condition nor by the internal stop forced after timeout.

4.6. EEPROM READ/WRITE

The following registers and bits are related to the EEPROM read/write functions:

- EE Address Register (3Dh) (see EEPROM MEMORY CONTROL REGISTERS)
- EE Data Register (3Eh) (see EEPROM MEMORY CONTROL REGISTERS)
- EE Command Register (3Fh) (see EEPROM MEMORY CONTROL REGISTERS)
- EEF flag and EEbusy status bit (see TEMPERATURE REGISTERS, 0Eh Temperature LSBs)
- EERD bit (see CONTROL REGISTERS, 10h Control 1)

4.6.1.POR REFRESH (ALL CONFIGURATION EEPROM → RAM)

Automatic read of all Configuration EEPROM registers at Power On Reset (POR):

- At power up a refresh of the Configuration RAM mirror values by the values in the Configuration EEPROM is automatically generated (see REGISTER RESET VALUES SUMMARY).
- The time of this first refreshment is $t_{PREFR} = ~66$ ms.
- The EEbusy bit in the register Temperature LSBs (0Eh) can be used to monitor the status of the refreshment.

4.6.2.AUTOMATIC REFRESH (ALL CONFIGURATION EEPROM → RAM)

Read all Configuration EEPROM registers automatically:

- To keep the integrity of the configuration data, all data of the Configuration RAM are refreshed by the data in the Configuration EEPROM each 24 hours, at date increment (at the beginning of the last second before midnight).
- The time of this automatic refreshment is $t_{AREFR} = \sim 1.4 \text{ ms.}$
- Refresh is only active when RV-3032-C7 is not in VBACKUP mode and not disabled by EERD (EEPROM Memory Refresh Disable) bit.
- Hint: It is not always necessary/meaningful to turn off the auto-refresh (EERD = 1) before an EEPROM access. e.g. if the current RTC time is 01 hour, etc.

4.6.3.UPDATE (ALL CONFIGURATION RAM → EEPROM)

Write to all Configuration EEPROM registers (see also USE OF THE CONFIGURATION REGISTERS):

- Before starting to change the configuration stored in the EEPROM, the auto refresh of the registers from the EEPROM has to be disabled by writing 1 into the EERD control bit in the Control 1 register.
- Then the new configuration can be written into the configuration RAM registers, when the whole new configuration is in the registers, writing the command 11h into the register EECMD will start the copy of the configuration into the EEPROM.
- The time of the update is $t_{UPDATE} = -46$ ms.
- When the transfer is finished (EEbusy = 0), the user can enable again the auto refresh of the registers by writing 0 into the EERD bit.
- The EEF flag in the register Temperature LSBs (0Eh) can be used for EEPROM write access failure detection.

4.6.4.REFRESH (ALL CONFIGURATION EEPROM → RAM)

Read all Configuration EEPROM registers:

- Before starting to read the configuration stored in the EEPROM, the auto refresh of the registers from the EEPROM has to be disabled by writing 1 into the EERD control bit in the Control 1 register.
- Then the actual configuration can be read from the Configuration EEPROM registers, writing the command 12h into the register EECMD will start the copy of the configuration into the RAM.
- The time of this controlled refreshment is $t_{REFR} = -1.4$ ms.
- Functions become active as soon as the RAM bytes are written (exception EEPW, where it is the EEPROM).
- When the transfer is finished (EEbusy = 0), the user can enable again the auto refresh of the registers by writing 0 into the EERD bit.

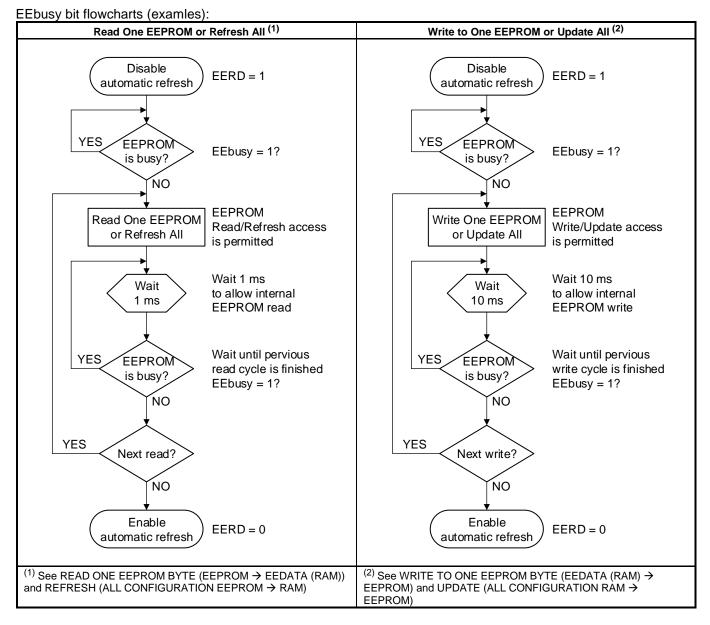
4.6.5.WRITE TO ONE EEPROM BYTE (EEDATA (RAM) → EEPROM)

Write to one EEPROM byte of the Configuration EEPROM or User EEPROM registers:

- Before starting to change data stored in the EEPROM, the auto refresh of the registers from the EEPROM has to be disabled by writing 1 into the EERD control bit in the Control 1 register.
- In order to write a single byte to the EEPROM, the address to which the data must be written is entered in the EEADDR register and the data to be written is entered in the EEDATA register, then the command 21h is written in the EECMD register to start the EEPROM write.
- The time to write to one EEPROM byte is $t_{WRITE} = -4.8$ ms.
- When the transfer is finished (EEbusy = 0), the user can enable again the auto refresh of the registers by writing 0 into the EERD bit.
- The EEF flag in the register Temperature LSBs (0Eh) can be used for EEPROM write access failure detection.

4.6.6.READ ONE EEPROM BYTE (EEPROM → EEDATA (RAM))

Read one EEPROM byte from Configuration EEPROM or User EEPROM registers:


- Before starting to read a byte in the EEPROM, the auto refresh of the registers from the EEPROM has to be disabled by writing 1 into the EERD control bit in the Control 1 register.
- In order to read a single byte from the EEPROM, the address to be read is entered in the EEADDR register, then the command 22h is written in the EECMD register and the resulting byte value can be read from the EEDATA register.
- The time to read one EEPROM byte is $t_{READ} = \sim 1.1$ ms.
- When the transfer is finished (EEbusy = 0), the user can enable again the auto refresh of the registers by writing 0 into the EERD bit.

4.6.7.EEBUSY BIT

The set EEbusy status bit (bit 2 in the Temperature LSBs register, 0Eh) indicates that the EEPROM is currently handling a read or write request and will ignore any further commands until the current one is finished. At power up a refresh is automatically generated. The time of this first refreshment is $t_{PREFR} = ~66$ ms. After the refreshment is finished; EEbusy is cleared to 0 automatically. The cleared EEbusy status bit indicates that the EEPROM transfer is finished.

To prevent access collision between the internal automatic EEPROM refresh cycle (EERD = 0) and external EEPROM read/write access through interface the following procedures have to be applied.

- Set EERD = 1 Automatic EEPROM Refresh needs to be disabled before EEPROM access.
- Check for EEbusy = 0 Access EEPROM only if not busy.
- Clear EERD = 0 It is recommended to enable Automatic EEPROM Refresh at the end of read/write access.
- Write EEPROM For example, wait 10 ms after each written EEPROM register before checking for EEbusy = 0 to allow internal data transfer (for Read EEPROM, wait, e.g. 1 ms).

Note: A minimum power supply voltage of $V_{DD:WRITE} = 1.6$ V during the whole EEPROM write procedure is required; i.e. until EEbusy = 0.

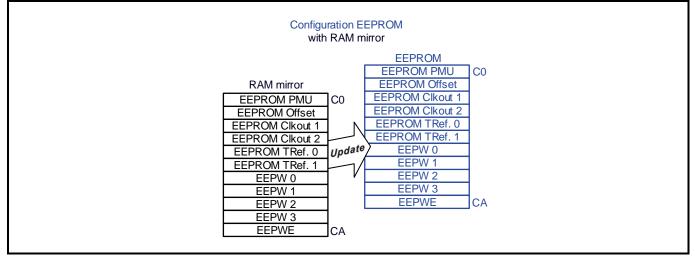
4.6.8.EEF FLAG

The set EEF flag (bit 3 in the Temperature LSBs register, 0Eh) indicates that the EEPROM write access has failed because power supply voltage V_{DD} has dropped below $V_{DD:EEF}$. The maximum $V_{DD:EEF} = 1.5$ volts. The value 1 is retained until a 0 is written by the user.

Note that this flag does not provide information about the EEPROM read access.

4.6.9. EEPROM READ/WRITE CONDITIONS

During a read/write of the EEPROM, if the V_{DD} supply drops, the device will continue to operate and communicate until a switchover to V_{BAT} occurs (in DSM or LSM mode). It is not recommended to operate during this time and all I²C communication should be halted as soon as V_{DD} failure is detected.


During the time that data is being written to the EEPROM, V_{DD} should remain above the minimum write voltage $V_{DD:WRITE} = 1.6 \text{ V}$. If at any time V_{DD} drops below this voltage, the data written to the device get corrupted (EEF set when VDD < $V_{DD:EEF}$).

To write to the EEPROM, the backup switchover circuit must switch back to the main power supply V_{DD} . See also AUTOMATIC BACKUP SWITCHOVER FUNCTION.

4.6.10. USE OF THE CONFIGURATION REGISTERS

The best practice method to use the Configuration EEPROM with RAM mirror registers at addresses C0h to CAh is to make all Configuration settings in the RAM first and then to update all Configuration EEPROMs by the Update EEPROM command.

Update all Configuration EEPROMs:

The method, how to enable/disable write protection and how to change the reference password can be found in section USER PROGRAMMABLE PASSWORD (Configuration Registers C6h to CAh).

Configuration Registers C0h to C5h:

- EEPROM PMU REGISTER, C0h EEPROM PMU
- EEPROM OFFSET REGISTER, C1h EEPROM Offset
- EEPROM CLKOUT REGISTERS, C2h EEPROM Clkout 1
- EEPROM CLKOUT REGISTERS, C3h EEPROM Clkout 2
- EEPROM TEMPERATURE REFERENCE REGISTERS, C4h EEPROM TReference 0
- EEPROM TEMPERATURE REFERENCE REGISTERS, C5h EEPROM TReference 1

Edit the Configuration settings (example, when write protection is enabled (EEPWE = 255)):

- 1. Enter the correct password PW (PW = EEPW) to unlock write protection
- 2. Disable automatic refresh by setting EERD = 1
- 3. Edit Configuration settings in registers C0h to C5h (RAM)
- 4. Update EEPROM (all Configuration RAM \rightarrow EEPROM) by setting EECMD = 11h
- 5. Enable automatic refresh by setting EERD = 0
- 6. Enter an incorrect password PW (PW ≠ EEPW) to lock the device

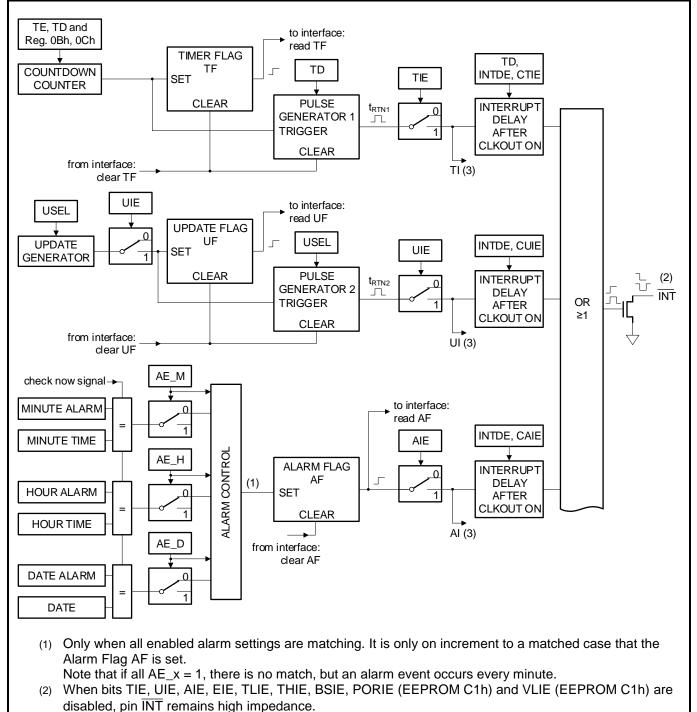
Note: RAM mirror of the Configuration registers defines the active zone. By writing only to the EEPROM, the configurations are not active. The configurations are activated as soon as a refresh occurs (POR refresh, Automatic refresh or Refresh by software). The exception is the EEPW, where the EEPROM is the active zone.

Note: To perform certain tests, it is sufficient to use only the RAM mirror (except EEPW). But the new, changed configurations are lost as soon as a refresh occurs (POR refresh, Automatic refresh or Refresh by software).

4.7. INTERRUPT OUTPUT

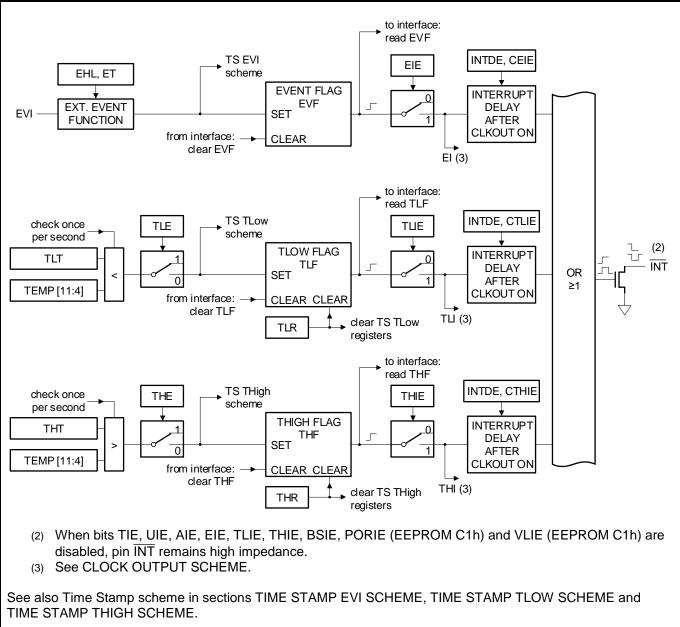
The interrupt pin \overline{INT} can be triggered by nine different functions:

- PERIODIC COUNTDOWN TIMER INTERRUPT FUNCTION
- PERIODIC TIME UPDATE INTERRUPT FUNCTION
- ALARM INTERRUPT FUNCTION
- TEMPERATURE LOW INTERRUPT FUNCTION
- TEMPERATURE HIGH INTERRUPT FUNCTION
- EXTERNAL EVENT INTERRUPT FUNCTION
- VOLTAGE LOW INTERRUPT FUNCTION
- AUTOMATIC BACKUP SWITCHOVER INTERRUPT FUNCTION
- POWER ON RESET INTERRUPT FUNCTION

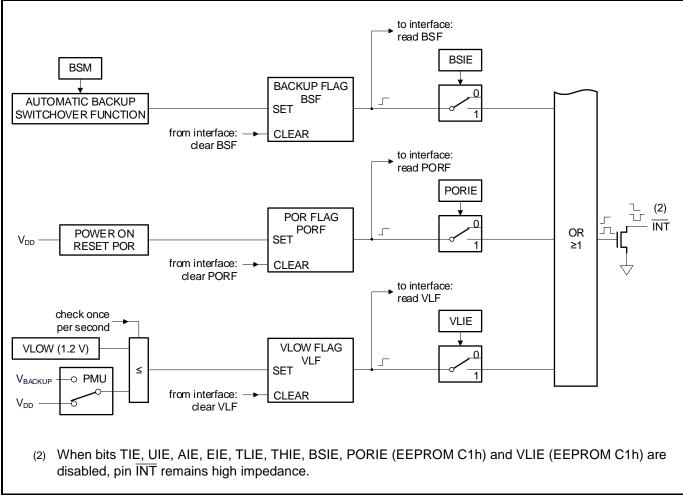

4.7.1.SERVICING INTERRUPTS

The INT pin can indicate nine types of interrupts. It outputs the logic OR operation result of these interrupt outputs. When an interrupt is detected (when INT pin produces a negative pulse or is at low level), the TF, UF, AF, TLF, THF EVF, VLF, BSF and PORF flags can be read to determine which interrupt event has occurred.

To keep INT pin from changing to low level, clear the TIE, UIE, AIE, EIE, TLIE, THIE, BSIE, PORIE and VLIE bits. Bits PORIE and VLIE are located in the EEPROM register C1h. To check whether an event has occurred without outputting any interrupts via the INT pin, software can read the TF, UF, AF, EVF, TLF, THF, BSF, PORF and VLF interrupt flags (polling).


4.7.2.INTERRUPT SCHEME

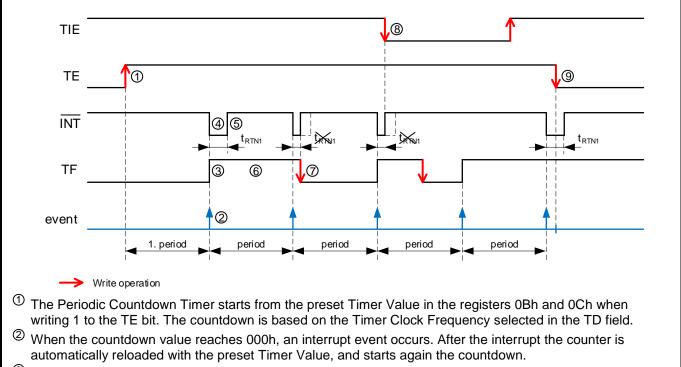
Interrupt Scheme (part 1/3):



(3) See CLOCK OUTPUT SCHEME.

4.8. PERIODIC COUNTDOWN TIMER INTERRUPT FUNCTION

The Periodic Countdown Timer Interrupt function generates an interrupt event periodically at any period set from 244.14 µs to 4095 minutes.


When starting the countdown timer for the first time, only the first period does not have a fixed duration. The amount of inaccuracy for the first timer period depends on the selected source clock (see FIRST PERIOD DURATION). When an interrupt event is generated, the \overline{INT} pin goes to the low level and the TF flag is set to 1 to indicate that an event has occurred. The output on the \overline{INT} pin is only effective if the TIE bit in the Control 2 register is set to 1. The low-level output signal on \overline{INT} pin is automatically cleared after the Auto reset time t_{RTN1} or it is cancelled when TF flag is cleared to 0.

- When TD = 00, t_{RTN1} = 122 µs
- When TD = 01, 10 or 11, t_{RTN1} = 7.813 ms

When bit TIE is set to 1, the internal countdown timer interrupt pulse (TI) can be used to enable the clock output on CLKOUT pin automatically. See PROGRAMMABLE CLOCK OUTPUT.

4.8.1.PERIODIC COUNTDOWN TIMER DIAGRAM

Diagram of the Periodic Countdown Timer Interrupt function: Example with interrupt on \overline{INT} pin (TIE = 1).

- ^③ When a Periodic Countdown Timer Interrupt occurs, the TF flag is set to 1.
- ⁽⁴⁾ If bit TIE is 1 and a Periodic Countdown Timer Interrupt occurs, the INT pin output pin goes LOW.
- ⁽⁵⁾ The INT output pin remains LOW during the Auto reset time t_{RTN1}, and then it is automatically cleared to high impedance. The TD field determines the Timer Clock Frequency and the Auto reset time t_{RTN1}. t_{RTN1} = 122 µs (TD = 00) or t_{RTN1} = 7.813 ms (TD = 01, 10, 11).
- ⁶ The TF flag retains 1 until it is cleared to 0 by software.
- $^{(7)}$ If the $\overline{\text{INT}}$ pin is LOW, its status change as soon as TF flag is cleared to 0.
- ⁽⁸⁾ If the $\overline{\text{INT}}$ pin is LOW, its status change as soon as TIE bit is cleared to 0.
- ⁽⁹⁾ When a 0 is written to the TE bit, the Periodic Countdown Timer function is stopped and the INT pin is cleared after the Auto reset time t_{RTN1}.

The following registers, fields and bits are related to the Periodic Countdown Timer Interrupt and Interrupt Controlled Clock Output functions:

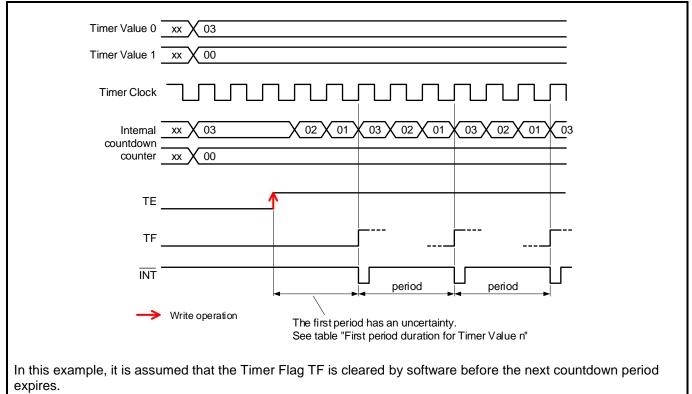
- Timer Value 0 Register (0Bh) (see PERIODIC COUNTDOWN TIMER CONTROL REGISTERS)
- Timer Value 1 Register (0Ch) (see PERIODIC COUNTDOWN TIMER CONTROL REGISTERS)
- TF flag (see STATUS REGISTER, 0Dh Status)
- TE bit and TD field (see CONTROL REGISTERS, 10h Control 1)
- TIE bit (see CONTROL REGISTERS, 11h Control 2)
- INTDE and CTIE bits (see CLOCK INTERRUPT MASK REGISTER, 14h Clock Interrupt Mask)

See also INTERRUPT CONTROLLED CLOCK OUTPUT.

Prior to entering any timer settings for the Periodic Countdown Timer Interrupt, it is recommended to write a 0 to the TIE and TE bits to prevent inadvertent interrupts on INT pin. The Timer Clock Frequency selection field TD is used to set the countdown period (source clock) for the Periodic Countdown Timer Interrupt function (four settings are possible). When STOP bit is set to 1 the interrupt function is stopped. When writing to the Seconds register or when ESYN bit is 1 in case of an External Event detection on EVI pin the length of the current countdown period is affected (see TIME SYNCHRONIZATION). When the Periodic Countdown Timer Interrupt function is not used, the Timer Value 0 register (0Bh) can be used as RAM byte.

Procedure to start the Periodic Countdown Timer Interrupt function and Interrupt Controlled Clock Output functions:

- 1. Initialize bits TE, TIE and TF to 0. In that order, to prevent inadvertent interrupts on INT pin.
- 2. Choose the Timer Clock Frequency and write the corresponding value in the TD field.
- 3. Choose the Countdown Period based on the Timer Clock Frequency, and write the corresponding Timer Value to the registers Timer Value 0 (0Bh) and Timer Value 1 (0Ch). See following table.
- 4. Set the TIE bit to 1 if you want to get a hardware interrupt on INT pin and if you want to use the Interrupt Controlled Clock Output function.
- 5. Set CTIE bit to 1 if you want to enable clock output when a timer interrupt occurs.
- 6. Set INTDE bit to 1 if you want to enable interrupt Delay after CLKOUT On.
- 7. Set the TE bit from 0 to 1 to start the Periodic Countdown Timer. The countdown starts at the rising edge of the SCL signal after Bit 0 of the Address 10h is transferred. See subsequent Figure that shows the start timing.


Countdown Period in seconds:

Countdown Period =	Timer Value	
	Timer Clock Frequency	

Countdown Period:

Timer Value	Countdown Period			
(0Bh and 0Ch)	TD = 00 (4096 Hz)	TD = 01 (64 Hz)	TD = 10 (1 Hz)	TD = 11 (1/60 Hz))
0	-	-	-	
1	244.14 µs	15.625 ms	1 s	1 min
2	488.28 µs	31.25 ms	2 s	2 min
:	:	:	:	:
41	10.010 ms	640.63 ms	41 s	41 min
205	50.049 ms	3.203 s	205 s	205 min
410	100.10 ms	6.406 s	410 s	410 min
2048	500.00 ms	32.000 s	2048 s	2048 min
:	:	:	:	:
4095 (FFFh)	0.9998 s	63.984 s	4095 s	4095 min

General countdown timer behavior:

Start timing of the Periodic Countdown Timer:

	Address 10h
SCL	
SDA	USEL TE EERD TD1 TD0 ACK ACK
Internal Timer	······································
INT	~~
event	↑
	1. period
\rightarrow	Rising edge of the SCL signal

4.8.3.FIRST PERIOD DURATION

When the TF flag is set, it indicates that an interrupt signal on \overline{INT} is generated if this mode is enabled. See Section INTERRUPT OUTPUT for details on how the interrupt can be controlled.

When starting the timer for the first time, the first period has an uncertainty. The uncertainty arises because of the activation instruction of the interface clock, which is not synchronous to the Timer Clock Frequency. Subsequent timer periods do not have such deviation. The amount of deviation for the first timer period depends on the chosen Timer Clock Frequency, see following Table.

First period duration for Timer Value n⁽¹⁾:

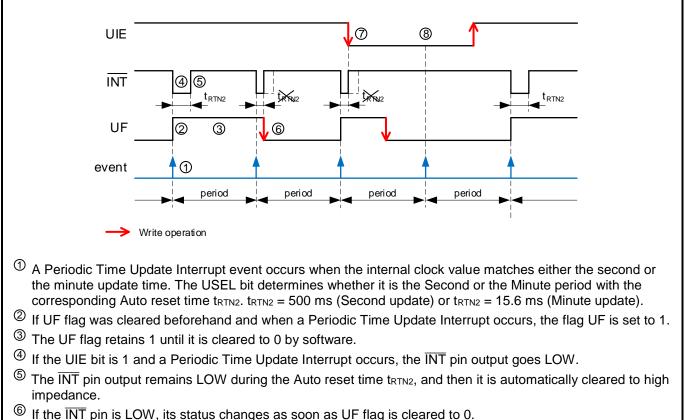
TD value Timer Clock Frequence		First period duration		Subsequent
	Timer Clock Frequency	Minimum Period	Maximum Period	periods duration
00	4096 Hz	n × 244 µs	(n + 1) × 244 µs	n x 244 µs
01	64 Hz	n × 15.625 ms	(n +1) × 15.625 ms	n × 15.625 ms
10	1 Hz	n×1s	n × 1 s + 15.625 ms	n×1s
11	1/60 Hz	n × 60 s	n × 60 s + 15.625 ms	n × 60 s
(1) Timer Values n from 2	1 to 4095 are valid. When the Ti	mer Value is set to 0, the co	ountdown timer does not start.	

At the end of every countdown, the timer sets the Periodic Countdown Timer Flag (bit TF in Status Register). The TF flag can only be cleared by command. When enabled, a pulse is generated at the interrupt pin INT.

When reading the Timer Value (Timer Value 0 and Timer Value 1), the preset value is returned and not the actual value.

4.9. PERIODIC TIME UPDATE INTERRUPT FUNCTION

The Periodic Time Update Interrupt function generates an interrupt event periodically at the One-Second or the One-Minute update time, according to the selected timer source with bit USEL.


When an interrupt event is generated, the \overline{INT} pin goes to the low level and the UF flag is set to 1 to indicate that an event has occurred. The output on \overline{INT} pin is only effective if UIE bit in Control 2 register is set to 1. The low-level output signal on the \overline{INT} pin is automatically cleared after the Auto reset time t_{RTN2} or it is cancelled when UF flag is cleared to 0 or when UIE is cleared to 0.

- When USEL = 0 (Second update), t_{RTN2} = 500 ms
- When USEL = 1 (Minute update), t_{RTN2} = 15.6 ms

When bit UIE is set to 1, the internal update interrupt pulse (UI) can be used to enable the clock output on CLKOUT pin automatically. See PROGRAMMABLE CLOCK OUTPUT.

4.9.1.PERIODIC TIME UPDATE DIAGRAM

Diagram of the Periodic Time Update Interrupt function:

- \bigcirc If the $\overline{\text{INT}}$ pin is LOW, its status changes as soon as UIE bit is cleared to 0.
- ^(B) When UIE bit is 0 and a Periodic Time Update Interrupt event occurs, the UF flag is not set and the INT pin output does not go low.

4.9.2.USE OF THE PERIODIC TIME UPDATE INTERRUPT

The following bits are related to the Periodic Time Update Interrupt and Interrupt Controlled Clock Output functions:

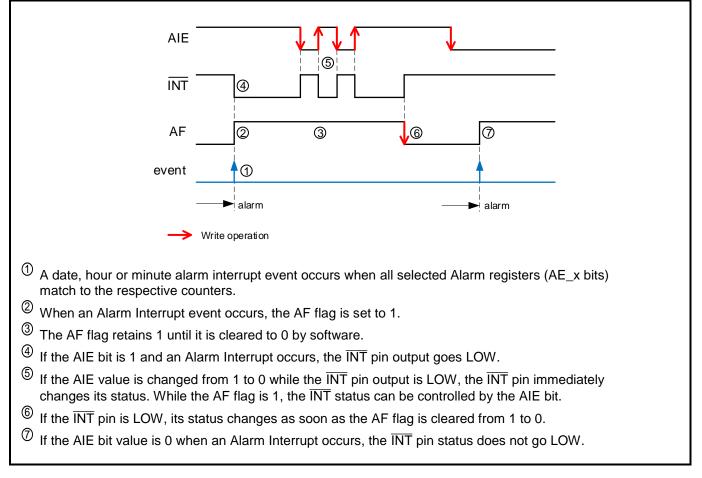
- UF flag (see STATUS REGISTER, 0Dh Status)
- USEL bit (see CONTROL REGISTERS, 10h Control 1)
- UIE bit (see CONTROL REGISTERS, 11h Control 2)
- INTDE and CUIE bits (see CLOCK INTERRUPT MASK REGISTER, 14h Clock Interrupt Mask)

See also INTERRUPT CONTROLLED CLOCK OUTPUT.

Prior to entering any other settings, it is recommended to write a 0 to the UIE bit to prevent inadvertent interrupts on \overline{INT} pin. When STOP bit is set to 1 the interrupt function is stopped. When writing to the Seconds register or when ESYN bit is 1 in case of an External Event detection on EVI pin the length of the current update period is affected (see TIME SYNCHRONIZATION).

Procedure to use the Periodic Time Update Interrupt and Interrupt Controlled Clock Output functions:

- 1. Initialize bits UIE and UF to 0.
- 2. Choose the timer source clock and write the corresponding value in the USEL bit.
- 3. Set the UIE bit to 1 to enable the Periodic Time Update Interrupt function with hardware interrupt on INT pin and if you want to use the Interrupt Controlled Clock Output function.
- 4. Set CUIE bit to 1 if you want to enable clock output when a time update interrupt occurs.
- 5. Set INTDE bit to 1 if you want to enable interrupt Delay after CLKOUT On.
- 6. The first interrupt will occur after the next event, either second or minute change.


4.10. ALARM INTERRUPT FUNCTION

The Alarm Interrupt function generates an interrupt for alarm settings such as date, hour and minute settings. When an interrupt event is generated, the INT pin goes to the low level and the AF flag is set to 1 to indicate that an event has occurred. The output on the INT pin is only effective if the AIE bit in the Control 2 register is set to 1.

When bit AIE is set to 1, the internal alarm interrupt signal (AI) can be used to enable the clock output on CLKOUT pin automatically. See PROGRAMMABLE CLOCK OUTPUT.

4.10.1. ALARM DIAGRAM

Diagram of the Alarm Interrupt function:

4.10.2. USE OF THE ALARM INTERRUPT

The following registers and bits are related to the Alarm Interrupt and Interrupt Controlled Clock Output functions:

- Minutes Register (02h) (see CLOCK REGISTERS)
- Hours Register (03h) (see CLOCK REGISTERS)
- Date Register (05h) (see CALENDAR REGISTERS)
- Minutes Alarm Register and AE_M bit (08h) (see ALARM REGISTERS)
- Hours Alarm Register and AE_H bit (09h) (see ALARM REGISTERS)
- Date Alarm Register and AE_D bit (0Ah) (see ALARM REGISTERS)
- AF flag (see STATUS REGISTER, 0Dh Status)
- AIE bit (see CONTROL REGISTERS, 11h Control 2)
- INTDE and CAIE bits (see CLOCK INTERRUPT MASK REGISTER, 14h Clock Interrupt Mask)

See also INTERRUPT CONTROLLED CLOCK OUTPUT.

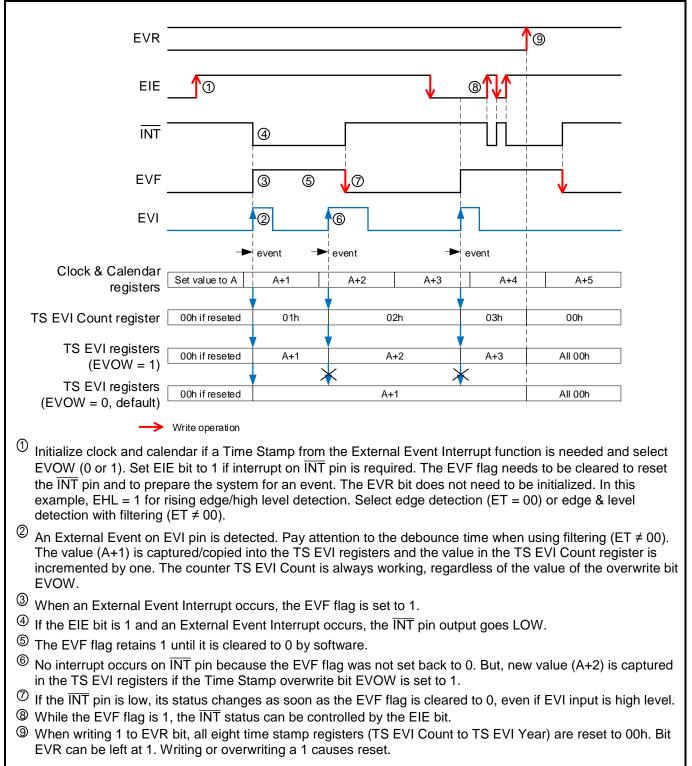
Prior to entering any timer settings for the Alarm Interrupt, it is recommended to write a 0 to the AIE bit to prevent inadvertent interrupts on INT pin. When STOP bit is set to 1 the interrupt function is stopped. When writing to the Seconds register or when ESYN bit is 1 in case of an External Event detection on EVI pin the length of the time to the next alarm interrupt is affected (see TIME SYNCHRONIZATION). When the Alarm Interrupt function is not used, one Byte (08h) of the Alarm registers can be used as RAM byte. In such case, be sure to write a 0 to the AIE bit (if the AIE bit value is 1 and the Alarm register is used as RAM register, INT may change to low level unintentionally).

Procedure to use the Alarm Interrupt and Interrupt Controlled Clock Output functions:

- 1. Initialize bits AIE and AF to 0.
- 2. Write the desired alarm settings in registers 08h to 0Ah. The three alarm enable bits, AE_M, AE_H and AE_D, are used to select the corresponding register that has to be taken into account for match or not. See the following table.
- 3. Set CAIE bit to 1 if you want to enable clock output when an alarm occurs.
- 4. Set INTDE bit to 1 if you want to enable interrupt Delay after CLKOUT On.
- 5. Set the AIE bit to 1 if you want to get a hardware interrupt on INT pin and if you want to use the Interrupt Controlled Clock Output function.

	Alarm enable bi	ts	Alarm event	
AE_D	AE_H	AE_M	Alarm event	
0	0	0	When minutes, hours and date match (once per month) ^{(1)} – Default value	
0	0	1	When hours and date match (once per month) ⁽¹⁾	
0	1	0	When minutes and date match (once per hour per month) ⁽¹⁾	
0	1	1	When date matches (once per month) ⁽¹⁾	
1	0	0	When minutes and hours match (once per day) ⁽¹⁾	
1	0	1	When hours match (once per day) ⁽¹⁾	
1	1	0	When minutes match (once per hour) ⁽¹⁾	
1	1	1	Every minute ⁽²⁾	
AE_x = 0 AE_x = 1	where x is D, H): Alarm is enable I: Alarm is disabl = 1: No match. E	ed		

Alarm Interrupt:


The External Event Interrupt is enabled by control bit EIE. The Time Stamp EVI function is always enabled. With the ET field the EVI input events can be configured either for edge detection, or for edge & level detection with filtering, and with the EHL bit the active edge/level can be configured.

If enabled (EIE =1 and EVF flag was cleared to 0 before) and an External Event on EVI pin is detected, the clock and calendar registers are captured and copied into the Time Stamp EVI registers, the INT is issued and the EVF flag is set to 1 to indicate that an external event has occurred.

When bit EIE is set to 1, the internal signal (EI) of the external event interrupt can be used to enable the clock output on CLKOUT pin automatically. See PROGRAMMABLE CLOCK OUTPUT.

4.11.1. EXTERNAL EVENT DIAGRAM

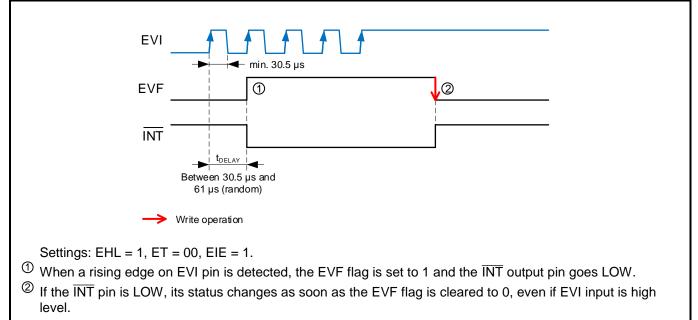
Diagram of the External Event Interrupt function. Example with EHL = 1 for rising edge/high level detection and without time synchronization function (ESYN = 0):

4.11.2. USE OF THE EXTERNAL EVENT INTERRUPT

The following registers and bits are related to the External Event Interrupt, EVI Time Stamp and Interrupt Controlled Clock Output functions:

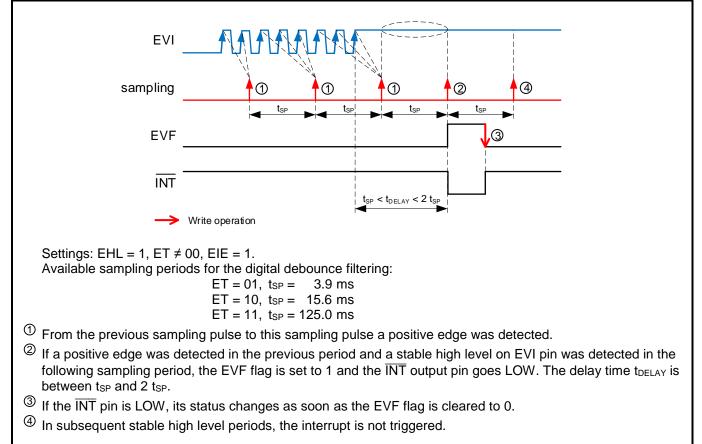
- 100th Seconds Register (00h) (see CLOCK REGISTERS)
- Seconds Register (01h) (see CLOCK REGISTERS)
- Minutes Register (02h) (see CLOCK REGISTERS)
- Hours Register (03h) (see CLOCK REGISTERS)
- Date Register (05h) (see CALENDAR REGISTERS)
- Month Register (06h) (see CALENDAR REGISTERS)
- Year Register (07h) (see CALENDAR REGISTERS)
- TS EVI Count Register (26h) (see TIME STAMP EVI REGISTERS)
- TS EVI 100th Seconds Register (27h) (see TIME STAMP EVI REGISTERS)
- TS EVI Seconds (28h) (see TIME STAMP EVI REGISTERS)
- TS EVI Minutes (29h) (see TIME STAMP EVI REGISTERS)
- TS EVI Hours (2Ah) (see TIME STAMP EVI REGISTERS)
- TS EVI Date (2Bh) (see TIME STAMP EVI REGISTERS)
- TS EVI Month (2Ch) (see TIME STAMP EVI REGISTERS)
- TS EVI Year (2Dh) (see TIME STAMP EVI REGISTERS)
- EVF flag (see STATUS REGISTER, 0Dh Status)
- EIE bit (see CONTROL REGISTERS, 11h Control 2)
- EVR and EVOW bits (see TIME STAMP CONTROL REGISTER, 13h Time Stamp Control)
- INTDE and CEIE bits (see CLOCK INTERRUPT MASK REGISTER, 14h Clock Interrupt Mask)
- EHL bit, ET field and ESYN bit (see EVI CONTROL REGISTER, 15h EVI Control)

See also INTERRUPT CONTROLLED CLOCK OUTPUT.


Prior to entering any timer settings for the External Event Interrupt, it is recommended to write a 0 to the EIE bit to prevent indvertent interrupts on INT pin. When STOP bit is set to 1 the interrupt function is still working, but because the 1 Hz tick is stopped and 100th Seconds register is reset to 00, it cannot provide useful data. When writing to the Seconds register or when ESYN bit is 1 in case of an External Event detection on EVI pin the length of the time to the next alarm interrupt is affected (see TIME SYNCHRONIZATION).

Procedure to use the External Event Interrupt, EVI Time Stamp and Interrupt Controlled Clock Output functions:

- 1. Initialize bit EIE to 0.
- 2. Clear flag EVF to 0.
- 3. Set EHL bit to 0 or 1 to choose falling edge/low level or rising edge/high level detection on pin EVI.
- 4. Select EDGE DETECTION (ET = 00) or LEVEL DETECTION WITH FILTERING (ET \neq 00).
- 5. Set EVOW bit to 1 if the last occurred event has to be recorded and TS EVI registers are overwritten. Hint: The counter TS EVI Count is always working, independent of the settings of the overwrite bit EVOW.
- 6. Write 1 to EVR bit, to reset all Time Stamp EVI registers to 00h. The bit EVR does not need to be reset.
- 7. Set CEIE bit to 1 if you want to enable clock output when external event occurs. See also CLOCK OUTPUT SCHEME.
- 8. Set INTDE bit to 1 if you want to enable interrupt Delay after CLKOUT On.
- 9. Set EIE bit to 1 if you want to get a hardware interrupt on INT pin and if you want to use the Interrupt Controlled Clock Output function.

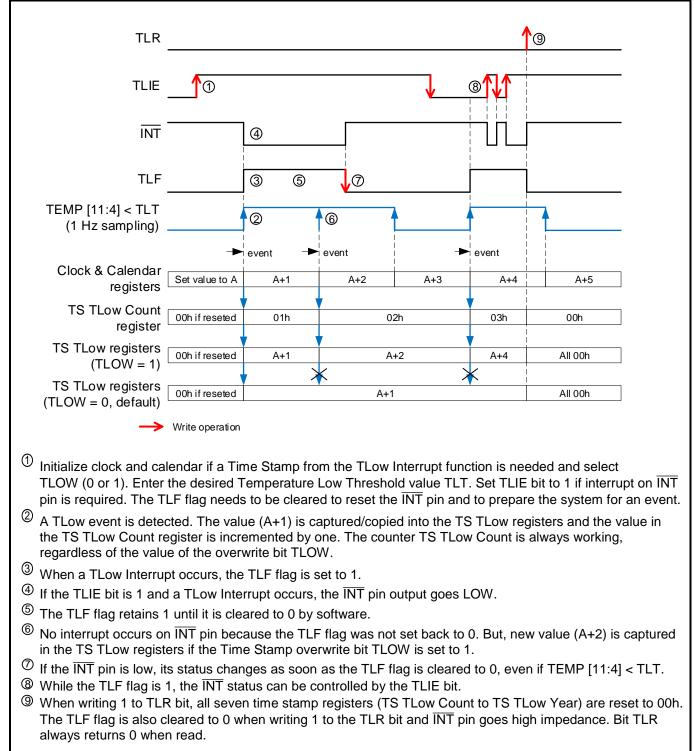

4.11.3. EDGE DETECTION (ET = 00)

Example with rising edge detection and interrupt output:

4.11.4. LEVEL DETECTION WITH FILTERING (ET ≠ 00)

Example with high level detection (rising edge & high level) and interrupt output:

4.12. TEMPERATURE LOW INTERRUPT FUNCTION


The Temperature Low Interrupt and the Time Stamp TLow function are enabled by the control bits TLE and TLIE. The Temperature Low Threshold value TLT which is compared with the TEMP [11:4] value can be defined in register 16h.

If enabled (TLE = 1 and TLIE =1 and TLF flag was cleared to 0 before) and TEMP [11:4] < TLT is detected (automatic temperature measurement is carried out once per second), the clock and calendar registers are captured and copied into the Time Stamp TLow registers, the \overline{INT} is issued and the TLF flag is set to 1 to indicate that a temperature low event has occurred.

When bit TLIE is set to 1, the internal signal (TLI) of the temperature low event interrupt can be used to enable the clock output on CLKOUT pin automatically. See PROGRAMMABLE CLOCK OUTPUT.

4.12.1. TEMPERATURE LOW DIAGRAM

Diagram of the Temperature Low Interrupt function. Example with Temperature Low detection enabled (TLE = 1):

4.12.2. USE OF THE TEMPERATURE LOW INTERRUPT

The following registers and bits are related to the Temperature Low Interrupt, TLow Time Stamp and Interrupt Controlled Clock Output functions:

- Seconds Register (01h) (see CLOCK REGISTERS)
- Minutes Register (02h) (see CLOCK REGISTERS)
- Hours Register (03h) (see CLOCK REGISTERS)
- Date Register (05h) (see CALENDAR REGISTERS)
- Month Register (06h) (see CALENDAR REGISTERS)
- Year Register (07h) (see CALENDAR REGISTERS)
- TLow Threshold Register (16h) (see TEMPERATURE THRESHOLDS REGISTERS)
- TS TLow Count Register (18h) (see TIME STAMP TLOW REGISTERS)
- TS TLow Seconds (19h) (see TIME STAMP TLOW REGISTERS)
- TS TLow Minutes (1Ah) (see TIME STAMP TLOW REGISTERS)
- TS TLow Hours (1Bh) (see TIME STAMP TLOW REGISTERS)
- TS TLow Date (1Ch) (see TIME STAMP TLOW REGISTERS)
- TS TLow Month (1Dh) (see TIME STAMP TLOW REGISTERS)
- TS TLow Year (1Eh) (see TIME STAMP TLOW REGISTERS)
- TLF flag (see STATUS REGISTER, 0Dh Status)
- TLE and TLIE bits (see CONTROL REGISTERS, 12h Control 3)
- TLR and TLOW bits (see TIME STAMP CONTROL REGISTER, 13h Time Stamp Control)
- INTDE and CTLIE bits (see CLOCK INTERRUPT MASK REGISTER, 14h Clock Interrupt Mask)

See also INTERRUPT CONTROLLED CLOCK OUTPUT.

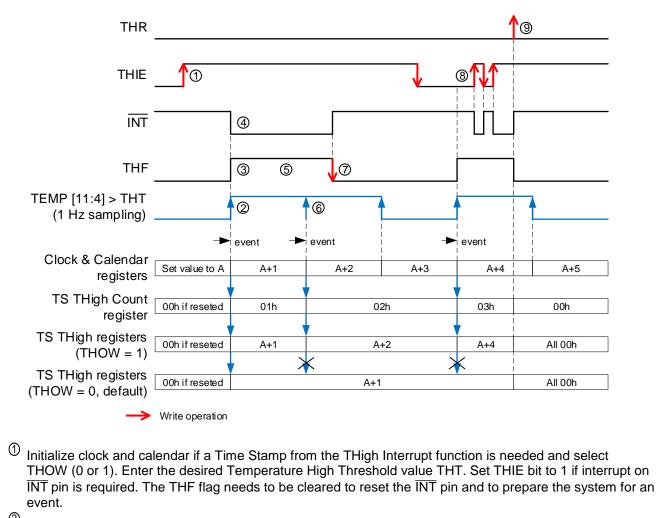
Prior to entering any timer settings for the Temperature Low Interrupt, it is recommended to write a 0 to the TLE and TLIE bits to prevent inadvertent interrupts on \overline{INT} pin. When the STOP bit value is 1, the Temperature Low Interrupt function cannot provide new data because the 1 Hz tick is stopped and because temperature measurement, temperature compensation and temperature comparison with the TLT value is stopped. When writing to the Seconds register or when the ESYN bit is 1 in case of an External Event detection on EVI pin the time is synchronized and the 100th Seconds register is reset to 00 (see TIME SYNCHRONIZATION).

When the Temperature Low Interrupt function is not used, the TLow Threshold register (16h) can be used as RAM byte. In such case, be sure to write a 0 to the TLE and TLIE bits (if the TLE and TLIE bit values are 1 and the TLow Threshold register is used as RAM register, INT may change to low level unintentionally).

Procedure to use the Temperature Low Interrupt, TLow Time Stamp and Interrupt Controlled Clock Output functions:

- 1. Initialize bits TLE and TLIE to 0.
- 2. Clear flag TLF to 0.
- 3. Enter the desired Temperature Low Threshold value TLT.
- 4. Set TLOW bit to 1 if the last occurred event has to be recorded and TS TLow registers are overwritten. Hint: The counter TS TLow Count is always working, independent of the settings of the overwrite bit TLOW.
- 5. Write 1 to TLR bit, to reset all Time Stamp TLow registers to 00h. With this reset, the TLF flag is also automatically reset to 0. The TLR bit always returns 0 when read.
- 6. Set CTLIE bit to 1 if you want to enable clock output when temperature low interrupt occurs. See also CLOCK OUTPUT SCHEME.
- 7. Set INTDE bit to 1 if you want to enable interrupt Delay after CLKOUT On.
- 8. Set TLIE bit to 1 if you want to get a hardware interrupt on INT pin and if you want to use the Interrupt Controlled Clock Output function.

4.13. TEMPERATURE HIGH INTERRUPT FUNCTION


The Temperature High Interrupt and the Time Stamp THigh function are enabled by the control bits THE and THIE. The Temperature High Threshold value THT which is compared with the TEMP [11:4] value can be defined in register 17h.

If enabled (THE = 1 and THIE =1 and THF flag was cleared to 0 before) and TEMP [11:4] > THT is detected (automatic temperature measurement is carried out once per second), the clock and calendar registers are captured and copied into the Time Stamp THigh registers, the INT is issued and the THF flag is set to 1 to indicate that a temperature high event has occurred.

When bit THIE is set to 1, the internal signal (THI) of the temperature high event interrupt can be used to enable the clock output on CLKOUT pin automatically. See PROGRAMMABLE CLOCK OUTPUT.

4.13.1. TEMPERATURE HIGH DIAGRAM

Diagram of the Temperature High Interrupt function. Example with Temperature High detection enabled (THE = 1):

- ⁽²⁾ A THigh event is detected. The value (A+1) is captured/copied into the TS THigh registers and the value in the TS THigh Count register is incremented by one. The counter TS THigh Count is always working, regardless of the value of the overwrite bit THOW.
- $^{\textcircled{3}}$ When a THigh Interrupt occurs, the THF flag is set to 1.
- ⁽⁴⁾ If the THIE bit is 1 and a THigh Interrupt occurs, the \overline{INT} pin output goes LOW.
- ⁽⁵⁾ The THF flag retains 1 until it is cleared to 0 by software.
- ⁽⁶⁾ No interrupt occurs on INT pin because the THF flag was not set back to 0. But, new value (A+2) is captured in the TS THigh registers if the Time Stamp overwrite bit THOW is set to 1.
- $^{(7)}$ If the $\overline{\text{INT}}$ pin is low, its status changes as soon as the THF flag is cleared to 0, even if TEMP [11:4] > THT.
- ^(a) While the THF flag is 1, the \overline{INT} status can be controlled by the THIE bit.
- When writing 1 to THR bit, all seven time stamp registers (TS THigh Count to TS THigh Year) are reset to 00h. The THF flag is also cleared to 0 when writing 1 to the THR bit and INT pin goes high impedance. Bit THR always returns 0 when read.

4.13.2. USE OF THE TEMPERATURE HIGH INTERRUPT

The following registers and bits are related to the Temperature LHigh Interrupt, THigh Time Stamp and Interrupt Controlled Clock Output functions:

- Seconds Register (01h) (see CLOCK REGISTERS)
- Minutes Register (02h) (see CLOCK REGISTERS)
- Hours Register (03h) (see CLOCK REGISTERS)
- Date Register (05h) (see CALENDAR REGISTERS)
- Month Register (06h) (see CALENDAR REGISTERS)
- Year Register (07h) (see CALENDAR REGISTERS)
- THigh Threshold Register (17h) (see TEMPERATURE THRESHOLDS REGISTERS)
- TS THigh Count Register (1Fh) (see TIME STAMP THIGH REGISTERS)
- TS THigh Seconds (20h) (see TIME STAMP THIGH REGISTERS)
- TS THigh Minutes (21h) (see TIME STAMP THIGH REGISTERS)
- TS THigh Hours (22h) (see TIME STAMP THIGH REGISTERS)
- TS THigh Date (23h) (see TIME STAMP THIGH REGISTERS)
- TS THigh Month (24h) (see TIME STAMP THIGH REGISTERS)
- TS THigh Year (25h) (see TIME STAMP THIGH REGISTERS)
- THF flag (see STATUS REGISTER, 0Dh Status)
- THE and THIE bits (see CONTROL REGISTERS, 12h Control 3)
- THR and THOW bits (see TIME STAMP CONTROL REGISTER, 13h Time Stamp Control)
- INTDE and CTHIE bits (see CLOCK INTERRUPT MASK REGISTER, 14h Clock Interrupt Mask)

See also INTERRUPT CONTROLLED CLOCK OUTPUT.

Prior to entering any timer settings for the Temperature High Interrupt, it is recommended to write a 0 to the THE and THIE bits to prevent inadvertent interrupts on INT pin. When the STOP bit value is 1, the Temperature High Interrupt function cannot provide new data because the 1 Hz tick is stopped and because temperature measurement, temperature compensation and temperature comparison with the THT value is stopped. When writing to the Seconds register or when the ESYN bit is 1 in case of an External Event detection on EVI pin the time is synchronized and the 100th Seconds register is reset to 00 (see TIME SYNCHRONIZATION).

When the Temperature High Interrupt function is not used, the THigh Threshold register (17h) can be used as RAM byte. In such case, be sure to write a 0 to the THE and THIE bits (if the THE and THIE bit values are 1 and the THigh Threshold register is used as RAM register, INT may change to low level unintentionally).

Procedure to use the Temperature High Interrupt, THigh Time Stamp and Interrupt Controlled Clock Output functions:

- 1. Initialize bits THE and THIE to 0.
- 2. Clear flag THF to 0.
- 3. Enter the desired Temperature High Threshold value THT.
- 4. Set THOW bit to 1 if the last occurred event has to be recorded and TS THigh registers are overwritten. Hint: The counter TS THigh Count is always working, independent of the settings of the overwrite bit THOW.
- 5. Write 1 to THR bit, to reset all Time Stamp THigh registers to 00h. With this reset, the THF flag is also automatically reset to 0. The THR bit always returns 0 when read.
- 6. Set CTHIE bit to 1 if you want to enable clock output when temperature high interrupt occurs. See also CLOCK OUTPUT SCHEME.
- 7. Set INTDE bit to 1 if you want to enable interrupt Delay after CLKOUT On.
- 8. Set THIE bit to 1 if you want to get a hardware interrupt on INT pin and if you want to use the Interrupt Controlled Clock Output function.

4.14. AUTOMATIC BACKUP SWITCHOVER INTERRUPT FUNCTION

The Automatic Backup Switchover Interrupt function generates an interrupt event when the BSM field (EEPROM C0h) is set to 01 (DSM) or 10 (LSM) and a switchover from VDD Power state to VBACKUP Power state occurs.

If enabled (BSIE = 1 and BSF flag was cleared to 0 before) and a Backup Switchover is detected, the \overline{INT} is issued and the BSF flag is set to 1 to indicate that a Backup Switchover has occurred.

Note that a debounce logic provides a debounce time t_{DEB} with a maximum value of 1 ms (when internal voltage was between V_{LOW} (1.2 V) and 1.0 V, the maximum value is one second), which will filter V_{DD} oscillation when switchover function will switch back from V_{BACKUP} to V_{DD} (see AUTOMATIC BACKUP SWITCHOVER FUNCTION). I²C access is again possible in VDD Power state after the debounce time t_{DEB} .

4.14.1. AUTOMATIC BACKUP SWITCHOVER DIAGRAM

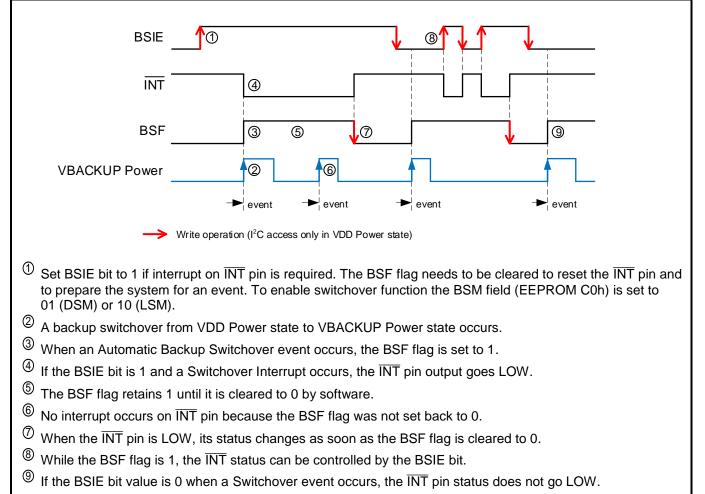


Diagram of the Automatic Backup Switchover Interrupt function:

4.14.2. USE OF THE AUTOMATIC BACKUP SWITCHOVER INTERRUPT

The following field and bits are related to the Automatic Backup Switchover Interrupt function:

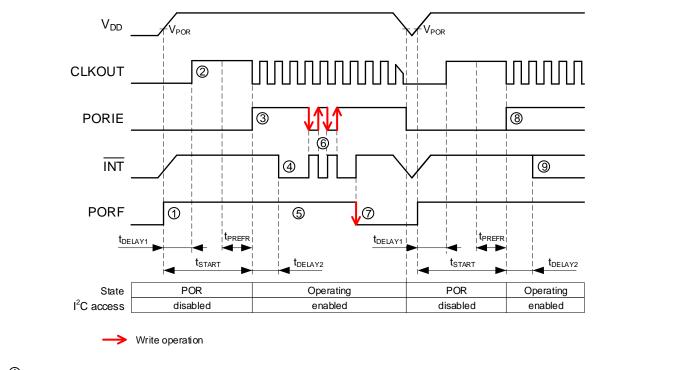
- BSF flag (see TEMPERATURE REGISTERS, 0Eh Temperature LSBs)
- BSIE bit (see CONTROL REGISTERS, 12h Control 3)
- BSM field (see EEPROM PMU REGISTER, C0h EEPROM PMU)

See also EEPROM READ/WRITE.

Prior to entering any other settings, it is recommended to write a 0 to the BSIE bit to prevent inadvertent interrupts on \overline{INT} pin.

Procedure to use the Automatic Backup Switchover Interrupt function:

- 1. Initialize bit BSIE to 0.
- 2. Clear flag BSF to 0.
- 3. Set the BSIE bit to 1 if you want to get a hardware interrupt on INT pin.
- 4. Choose the switchover mode (DSM or LSM) and write the corresponding value in the BSM field.


4.15. POWER ON RESET INTERRUPT FUNCTION

The Power On Reset Interrupt function is enabled by the PORIE control bit (EEPROM C1h). The PORIE bit has to be set beforehand in the EEPROM, not only in the RAM (see EEPROM READ/WRITE).

When voltage drop below V_{POR} is detected ($V_{DD} < V_{POR}$) the PORF flag is set to 1 to indicate that a Power On Reset has occurred and when the PORIE bit is 1 the INT pin goes to low level. A PORF value of 1 indicates also that the time information is corrupted. The value 1 is retained until a 0 is written by the user.See also POWER ON AC ELECTRICAL CHARACTERISTICS.

4.15.1. POWER ON RESET DIAGRAM

Diagram of the Power On Reset Interrupt function:

- ⁽¹⁾ Flag PORF is set when V_{DD} was below V_{POR} .
- ⁽²⁾ After power on delay t_{DELAY1}, = ~3 ms, CLKOUT is set to HIGH when NCLKE = 0 (CLKOUT directly enabled).
 ⁽³⁾ If the PORIE bit (EEPROM C1h) was set to 1 beforehand (in EEPROM), the PORIE bit in the RAM is set to 1 after the typical start-up time t_{START} = 0.5 s including the first refreshment time t_{PREFR} = ~66 ms.
- If the PORIE bit is 1 and a Power On Reset event occurs, the INT pin output goes LOW after a delay time of t_{DELAY2} = ~1 ms.
- ^⑤ The PORF flag retains 1 until it is cleared to 0 by software.
- ⁽⁶⁾ While the PORF flag is 1, the \overline{INT} status can be controlled by the PORIE bit.
- $^{\textcircled{O}}$ If the $\overline{\text{INT}}$ pin is LOW, its status changes as soon as the PORF flag is cleared to 0.
- ⁽⁸⁾ If the PORIE bit (EEPROM C1h) was set to 1 beforehand (in EEPROM), the PORIE bit in the RAM is set to 1 after the start-up time t_{START} = 0.5 s including the first refreshment time t_{PREFR} = ~66 ms. Or else, if the PORIE bit (EEPROM 21h) was set to 0 beforehand (in EEPROM), the PORIE bit in the RAM is set to 0 after the start-up time t_{START} = 0.5 s and the first refreshment time t_{PREFR} = ~66 ms.
- If the PORIE bit is 1 when a Power On Reset event occurs, the INT pin output goes LOW after a delay time of t_{DELAY2} = ~1 ms.

Or else, if the PORIE bit is 0 when a Power On Reset event occurs, pin INT remains high impedance.

4.15.2. USE OF THE POWER ON RESET INTERRUPT

The following registers and bits are related to the Power On Reset Interrupt function:

- PORF flag (see STATUS REGISTER, 0Dh Status)
- PORIE bit (see EEPROM OFFSET REGISTER, C1h EEPROM Offset)

See also EEPROM READ/WRITE.

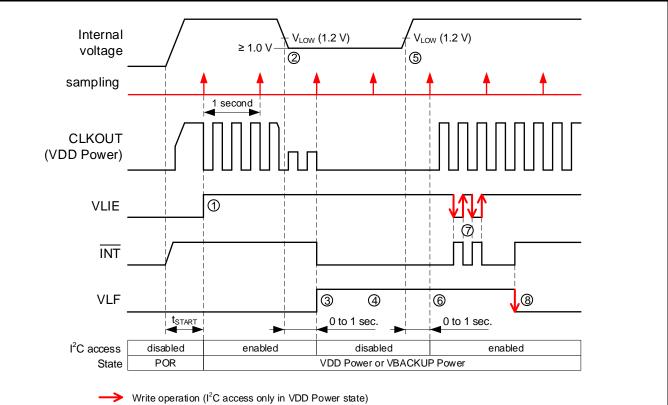
The PORIE bit has to be set beforehand in the EEPROM, not in the RAM.

Procedure to use the Power On Reset Interrupt function:

- 1. In the EEPROM, set the PORIE bit to 1 if you want to get a hardware interrupt on INT pin at the next Power On Reset event. Procedure according to EEPROM READ/WRITE.
- 2. The first interrupt will occur after the next POR event.

4.16. VOLTAGE LOW INTERRUPT FUNCTION

The Voltage Low Interrupt function generates an interrupt event when a voltage drop of the internal power supply voltage below V_{LOW} (1.2 V) is detected. If the internal voltage is below V_{LOW} , the temperature compensation is stopped, CLKOUT is LOW and the I²C interface is disabled. The interrupt enable bit VLIE is located in the EEPROM Register C1h.


If enabled (VLIE = 1 and VLF flag was cleared to 0 before) and a voltage drop below V_{LOW} is detected, the \overline{INT} is issued and the VLF flag is set to 1 to indicate that a Voltage Low event has occurred. The VLF value of 1 indicates that the data in the device are no longer valid and all registers must be initialized. The value 1 is retained until a 0 is written by the user (no automatic cancellation).

Note that at power on (POR) the VLF flag is automatically cleared to 0.

Note that the internal power supply voltage is sampled once per second (in VDD or VBACKUP Power state).

4.16.1. VOLTAGE LOW DIAGRAM

Diagram of the Voltage Low Interrupt function:

- ^① If the VLIE bit (EEPROM C1h) was set to 1 beforehand (in EEPROM), the VLIE bit in the RAM is set to 1 after the start-up time t_{START} = 0.5 s including the first refreshment time t_{PREFR} = ~66 ms.
- ⁽²⁾ The internal power supply voltage drops below V_{LOW} (1.2 V) to a voltage greater than the minimum time keeping voltage (typically 1.0 V).
- ^③ After a delay of 0 to 1 second, flag VLF is set and if the VLIE bit is 1 the INT pin output goes LOW. Only the RTC without compensation is running (Temperature compensation stopped, CLKOUT LOW, I²C disabled).
- ^④ The VLF flag cannot be read or cleared to 0 while the I²C access is disabled.
- ⁽⁵⁾ The internal power supply voltage rises again above V_{LOW} (1.2 V).
- ⁽⁶⁾ After a delay of 0 to 1 second, the VLF flag can be read and it retains 1 until it is cleared to 0 by software (Temperature compensation ON, CLKOUT ON, I²C ON).
- While the VLF flag is 1, the INT status can be controlled by the VLIE bit. Whenever the VLIE bit is 0 pin INT is high impedance.
- ⁽⁸⁾ If the \overline{INT} pin is LOW, its status changes as soon as the VLF flag is cleared to 0.

4.16.2. USE OF THE VOLTAGE LOW INTERRUPT

The following bits are related to the Voltage Low Interrupt function:

- VLF flag (see STATUS REGISTER, 0Dh Status)
- VLIE bit (see EEPROM OFFSET REGISTER, C1h EEPROM Offset)

See also EEPROM READ/WRITE.

Prior to entering any other settings, it is recommended to write a 0 to the VLIE bit to prevent inadvertent interrupts on \overline{INT} pin.

Procedure to use the Voltage Low Interrupt function:

- 1. Initialize bit VLIE to 0.
- 2. Clear flag VLF to 0.
- 3. Set the VLIE bit to 1 if you want to get a hardware interrupt on INT pin.

4.17. TIME STAMP EVI FUNCTION

The Time Stamp EVI function is always enabled.

When an External Event on EVI pin is detected, the clock and calendar registers are captured and copied into the Time Stamp EVI registers. When the EVOW bit is set to 0 and if the Time Stamp EVI registers were previously initialized to zero by writing 1 to the EVR bit, only one (the first) event is recorded. When the EVOW bit is set to 1, the last occurred event is recorded and TS EVI registers (TS EVI 100th Seconds to TS EVI Year) are overwritten. The TS EVI Count register is always working, independent of the settings of the overwrite bit EVOW.

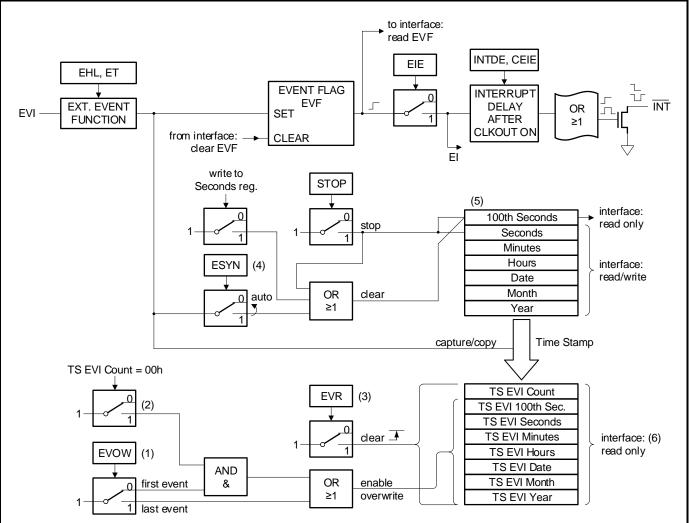
When writing 1 to EVR bit, all eight time stamp registers (TS EVI Count to TS EVI Year) are reset to 00h. Bit EVR can be left at 1. Writing or overwriting a 1 causes reset. Hint: When EVI pin = HIGH, all Time Stamp EVI registers are also reset to 00h at POR. Before using the Time Stamp EVI function, it is recommended to write 1 to EVR bit.

When STOP bit is set to 1 the interrupt function is still working, but because the 1 Hz tick is stopped and 100th Seconds register is reset to 00, it cannot provide useful data. When writing to the Seconds register or when the ESYN bit is 1 in case of an External Event detection on EVI pin the time is synchronized and the 100th Seconds register is reset to 00 (the ESYN bit function does first the Time Stamp EVI, then clears 100th Seconds register) (see TIME SYNCHRONIZATION).

Procedure for using the Time Stamp EVI function:

- 1. Initialize bit EIE to 0.
- 2. Select EVOW (0 or 1) and clear EVF flag.
- 3. Write 1 to EVR bit, to reset all Time Stamp EVI registers to 00h. EVR may remain set. No further reset occurs.

Hint: EVF flag is not reset by the EVR bit function.


4. Initialize the EXTERNAL EVENT INTERRUPT FUNCTION.

Hint: The INT signal is issued when EIE bit is set to 1. The EVF flag is set to 1 to indicate that an external event has occurred.

Caution: For the Time Stamp EVI function, only the TS EVI Count register is responsible for detecting first or last event (EVOW), and therefore, always after an overflow of the TS EVI Count register from 255 to 0, a new First Event is allowed by the function. See also the following scheme:

4.17.1. TIME STAMP EVI SCHEME

Time Stamp EVI scheme:

- (1) When EVOW bit is set to 1 the TS EVI registers (TS EVI 100th Seconds to TS EVI Year) are overwritten. The last occurred event is recorded. When EVOW bit is set to 0, the TS EVI registers are overwritten once only. To initialize or reinitialize the first event function, the Time Stamp EVI registers have to be cleared by writing 1 to the EVR bit (POR has same effect, when EVI pin = HIGH). The TS EVI Count register is always working, independent of the settings of the overwrite bit EVOW.
 - Caution: After overflow of the TS EVI Count register from 255 to 0, a new First Event is performed.
- (2) If TS EVI Count register = 00h, a first event can be performed.
- (3) When writing 1 to EVR bit, all eight time stamp registers (TS EVI Count to TS EVI Year) are reset to 00h. Bit EVR can be left at 1. Writing or overwriting a 1 causes reset.
- (4) When an External Event occurs, the Time Stamp EVI is created first and then the 100th Seconds register is cleared to 00. After the event detection, the ESYN bit is reset to 0 automatically.
- (5) Changing STOP bit from 1 to 0, or writing to the Seconds register, or when the ESYN bit is 1 in case of an External Event detection on EVI pin do not create an extra 1 Hz tick for the Seconds register.
- (6) During I^2C read access to the TS EVI registers the time stamp capture function is blocked.

See also Interrupt Scheme (part 2/3) in section INTERRUPT SCHEME.

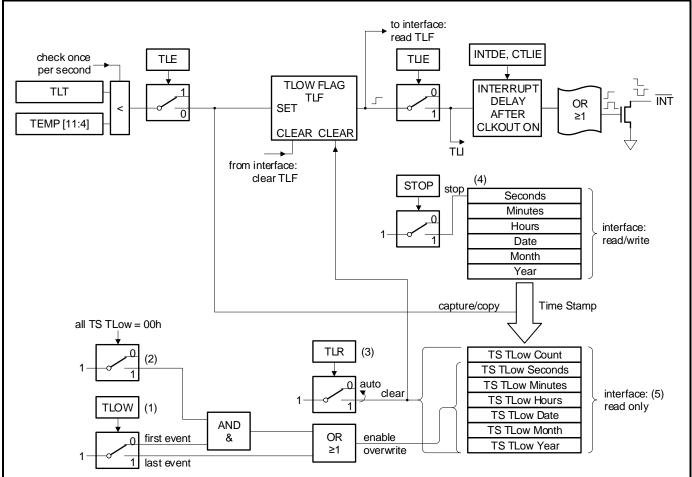
4.18. TIME STAMP TLOW FUNCTION

The Time Stamp TLow function is enabled by the control bit TLE.

If TEMP [11:4] < TLT is detected (automatic temperature measurement is carried out once per second), the clock and calendar registers are captured and copied into the Time Stamp TLow registers. When the TLOW bit is set to 0 and if the Time Stamp TLow registers were previously initialized to zero by writing 1 to the TLR bit, only one (the first) event is recorded. When the TLOW bit is set to 1, the last occurred event is recorded and TS TLow registers (TS TLow Seconds to TS TLow Year) are overwritten. The TS TLow Count register is always working, independent of the settings of the overwrite bit TLOW.

When writing 1 to TLR bit, all seven time stamp registers (TS TLow Count to TS TLow Year) are reset to 00h and the TLF flag is automatically cleared to 0. The TLR bit always returns 0 when read. Hint: All Time Stamp TLow registers are also reset to 00h at POR. Before using the Time Stamp TLow function, it is recommended to write 1 to TLR bit. When the STOP bit value is 1, the Temperature Low Interrupt function cannot provide new data because the 1 Hz tick is stopped and because temperature measurement, temperature compensation and temperature comparison with the TLT value is stopped. When writing to the Seconds register or when the ESYN bit is 1 in case of an External Event detection on EVI pin the time is synchronized and the 100th Seconds register is reset to 00 (see TIME SYNCHRONIZATION).

Procedure for using the Time Stamp TLow function:


- 1. Initialize bits TLE and TLIE to 0.
- 2. Select TLOW (0 or 1) and clear TLF flag (or automatically done in the following step).
- 3. Write 1 to TLR bit, to reset all Time Stamp TLow registers to 00h. The TLF flag is automatically cleared to 0 when writing 1 to the TLR bit. Bit TLR always returns 0 when read.
- 4. Initialize the TEMPERATURE LOW INTERRUPT FUNCTION.
- 5. Set the TLE bit to 1 to enable the Time Stamp TLow function.

Hint: The INT signal is issued when TLIE bit is set to 1. The TLF flag is set to 1 to indicate that a temperature low event has occurred.

Hint: For the Time Stamp TLow function, all TS TLow registers are responsible for detecting first or last event (TLOW). When all TS TLow registers are 00h a First Event is allowed by the function. See also the following scheme:

4.18.1. TIME STAMP TLOW SCHEME

Time Stamp TLow scheme:

- (1) When TLOW bit is set to 1 the TS TLow registers (TS TLow Seconds to TS TLow Year) are overwritten. The last occurred event is recorded. When TLOW bit is set to 0, the TS TLow registers are overwritten once only. To initialize or reinitialize the first event function, the Time Stamp TLow registers have to be cleared by writing 1 to the TLR bit (POR has same effect). The TS TLow Count register is always working, independent of the settings of the overwrite bit TLOW.
- (2) If all TS TLow register = 00h, a first event can be performed.
- (3) When writing 1 to TLR bit, all seven time stamp registers (TS TLow Count to TS TLow Year) are reset to 00h and the TLF flag is automatically cleared to 0. The TLR bit always returns 0 when read.
- (4) Changing STOP bit from 1 to 0, or writing to the Seconds register, or when the ESYN bit is 1 in case of an External Event detection on EVI pin do not create an extra 1 Hz tick for the Seconds register.
- (5) During I^2C read access to the TS TLow registers the time stamp capture function is blocked.

See also Interrupt Scheme (part 2/3) in section INTERRUPT SCHEME.

4.19. TIME STAMP THIGH FUNCTION

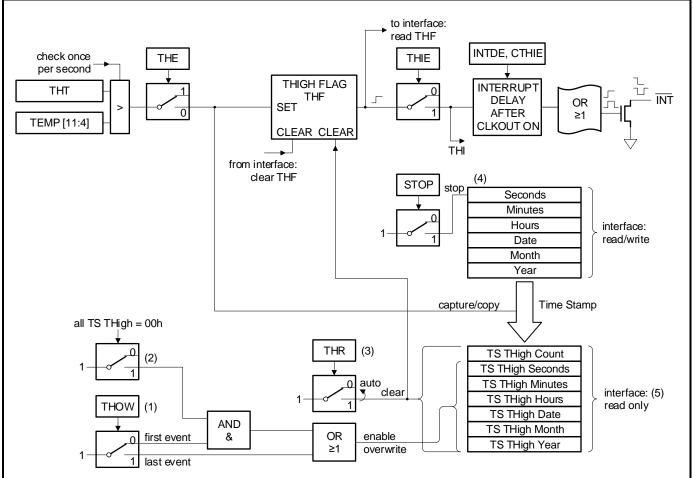
The Time Stamp THigh function is enabled by the control bit THE.

If TEMP [11:4] > THT is detected (automatic temperature measurement is carried out once per second), the clock and calendar registers are captured and copied into the Time Stamp THigh registers. When the THOW bit is set to 0 and if the Time Stamp THigh registers were previously initialized to zero by writing 1 to the THR bit, only one (the first) event is recorded. When the THOW bit is set to 1, the last occurred event is recorded and TS THigh registers (TS THigh Seconds to TS THigh Year) are overwritten. The TS THigh Count register is always working, independent of the settings of the overwrite bit THOW.

When writing 1 to THR bit, all seven time stamp registers (TS THigh Count to TS THigh Year) are reset to 00h and the THF flag is automatically cleared to 0. The THR bit always returns 0 when read. Hint: All Time Stamp THigh registers are also reset to 00h at POR. Before using the Time Stamp THigh function, it is recommended to write 1 to THR bit.

When the STOP bit value is 1, the Temperature High Interrupt function cannot provide new data because the 1 Hz tick is stopped and because temperature measurement, temperature compensation and temperature comparison with the THT value is stopped. When writing to the Seconds register or when the ESYN bit is 1 in case of an External Event detection on EVI pin the time is synchronized and the 100th Seconds register is reset to 00 (see TIME SYNCHRONIZATION).

Procedure for using the Time Stamp THigh function:


- 1. Initialize bits THE and THIE to 0.
- 2. Select THOW (0 or 1) and clear THF flag (or automatically done in the following step).
- 3. Write 1 to THR bit, to reset all Time Stamp THigh registers to 00h. The THF flag is automatically cleared to 0 when writing 1 to the THR bit. Bit THR always returns 0 when read.
- 4. Initialize the TEMPERATURE HIGH INTERRUPT FUNCTION.
- 5. Set the THE bit to 1 to enable the Time Stamp THigh function.

Hint: The INT signal is issued when THIE bit is set to 1. The THF flag is set to 1 to indicate that a temperature high event has occurred.

Hint: For the Time Stamp THigh function, all TS THigh registers are responsible for detecting first or last event (THOW). When all TS THigh registers are 00h a First Event is allowed by the function. See also the following scheme:

4.19.1. TIME STAMP THIGH SCHEME

Time Stamp THigh scheme:

- (1) When THOW bit is set to 1 the TS THigh registers (TS THigh Seconds to TS THigh Year) are overwritten. The last occurred event is recorded. When THOW bit is set to 0, the TS THigh registers are overwritten once only. To initialize or reinitialize the first event function, the Time Stamp THigh registers have to be cleared by writing 1 to the THR bit (POR has same effect). The TS THigh Count register is always working, independent of the settings of the overwrite bit THOW.
- (2) If all TS THigh register = 00h, a first event can be performed.
- (3) When writing 1 to THR bit, all seven time stamp registers (TS THigh Count to TS THigh Year) are reset to 00h and the THF flag is automatically cleared to 0. The THR bit always returns 0 when read.
- (4) Changing STOP bit from 1 to 0, or writing to the Seconds register, or when the ESYN bit is 1 in case of an External Event detection on EVI pin do not create an extra 1 Hz tick for the Seconds register.
- (5) During I^2C read access to the TS THigh registers the time stamp capture function is blocked.

See also Interrupt Scheme (part 2/3) in section INTERRUPT SCHEME.

4.20. TEMPERATURE REFERENCE ADJUSTMENT

The Temperature Reference 16-bit value TREF can be used to calibrate the Temperature value TEMP of the Digital Thermometer. The adjustment of TREF is purely digitally and has only the effect of shifting the linear curve of the thermometer vertically up or down. This is a one-point setting and is usually made at room temperature for post PCB soldering temperature variation compensation. The change in TREF has no effect on the temperature compensation of the RTC.

The TREF value contains a two's complement number with a minimum adjustment step (one LSB) of $\pm 1/128 = \pm 0.0078125$ °C. The preconfigured (Factory Calibrated) TREF value may be changed by the user (see EEPROM TEMPERATURE REFERENCE REGISTERS). Note the following special formulas for conversion to °C and back.

4.20.1. TREF VALUE DETERMINATION

The following registers and fields are related to the Temperature Reference value TREF:

- TEMP [3:0] field (see TEMPERATURE REGISTERS, 0Eh Temperature LSBs)
- TEMP [11:4] field (see TEMPERATURE REGISTERS, 0Fh Temperature MSBs)
- TREF [7:0] field (see EEPROM TEMPERATURE REFERENCE REGISTERS, C4h EEPROM TReference 0)
- TREF [15:8] field (see EEPROM TEMPERATURE REFERENCE REGISTERS, C5h EEPROM TReference 1)

See also EEPROM READ/WRITE.

Formulas for conversion from 16-bit TREF value to TREF value in °C and back (see also table below):

TREF in °C =
$$\left(\frac{\text{TREF}}{128} - 0.5\right)$$
°C
TREF = (TREF in °C + 0.5°C) × $\frac{128}{90}$

A new 16-bit reference value TREF is determined by the following process:

- 1. Make an exact temperature measurement Ttarget in °C with an external temperature measurement device at room temperature and read out the 12-bit TEMP value of the temperature registers at the same time. The measurement sensor for Ttarget must be as close as possible to the RTC.
- 2. Convert the 12-bit TEMP value into the TEMP value in °C (see TEMPERATURE REGISTERS).
- 3. Calculate the temperature difference $\Delta T = T$ target TEMP, all in °C.
- 4. Read the 16-bit TREF value.
- 5. Convert the TREF value in °C (see formula above).
- 6. Calculate the new TREF = TREF + Δ T, all in °C.
- 7. Convert the new TREF value in °C into the 16-bit TREF value (see formula above).
- 8. Write the new TREF value to the registers.

Example:

- 1. Ttarget = 26° C, TEMP = 384d
- 2. TEMP = $384/16 = 24^{\circ}C$
- 3. $\Delta T = Ttarget TEMP = 26^{\circ}C 24^{\circ}C = +2^{\circ}C$
- 4. TREF = 3059d
- 5. TREF = (3059/128 0.5)°C = 23.3984375°C
- 6. New TREF = TREF + Δ T = 23.3984375 °C + 2°C = 25.3984375 °C
- 7. New TREF = (new TREF in °C + 0.5°C) × 128/°C = (25.3984375°C + 0.5°C) × 128/°C = 3315d
- 8. <u>New TREF = 3315d</u>

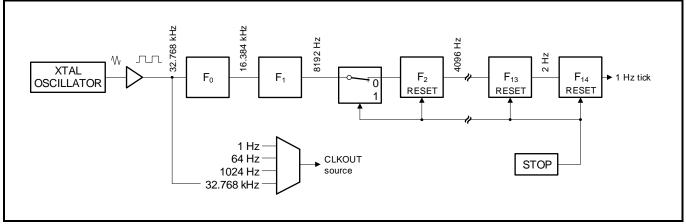
TREF (16 bits) examples:

TREF [15:0] value	Hexadecimal	Decimal	(Signed decimal)	TREF in °C(*)
0001'0001'1100'0000	11C0	4544	4544	35
0001'0001'1011'1111	11BF	4543	4543	34.9921875
:	:	:	:	:
0000'1100'1100'0001	0CC1	3265	3265	25.0078125
0000'1100'1100'0000	0000	3264	3264	25
0000'1100'1011'1111	0CBF	3263	3263	24.9921875
:	:	:	:	:
0000'0111'1100'0001	07C1	1985	1985	15.0078125
0000'0111'1100'0000	07C0	1984	1984	15

(*) TREF value in °C = (Signed decimal / 128) - 0.5 = (Signed decimal × 0.0078125) - 0.5. Note that the TREF value (a two's complement value) is used for the calibration of the room temperature value, and not to create a special temperature offset. Therefore, the range of examples is only in the positive range, and only from +15°C to +35°C.

4.21. TIME SYNCHRONIZATION

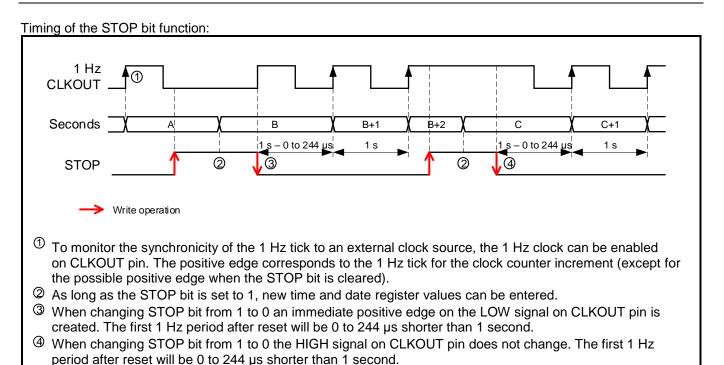
The time of the RV-3032-C7 can be synchronized in three ways: With the STOP bit, where the 1 Hz tick can be stopped completely, or by writing to the Seconds register, or by the ESYN bit, where the time is synchronized to an external signal.


4.21.1. STOP BIT FUNCTION

The STOP bit function is used for a software-based accurate and safe starting of the time circuits.

The STOP bit is set to 1, the clock prescaler frequencies from 4096 Hz to 1 Hz are stopped and reset and thus no 1 Hz ticks are generated and an eventual present memorized 1 Hz update is also reset. The 100th Seconds register (100 Hz) is reset to 0 also. Because the upper stage of the prescaler is not reset and not stopped (8192 Hz) and the I²C interface is asynchronous, the first 1 Hz period after reset (after setting STOP bit from 1 to 0) will be 0 to 244 µs shorter than 1 second. Stopping and resetting the prescaler will stop all subsequent peripherals (clock and calendar with alarm, XTAL CLKOUT, timer clock, update timer clock, EVI input filter and temperature measurement, temperature compensation and temperature comparison with THT and TLT values. The External Event Interrupt function is still working but cannot provide useful data.

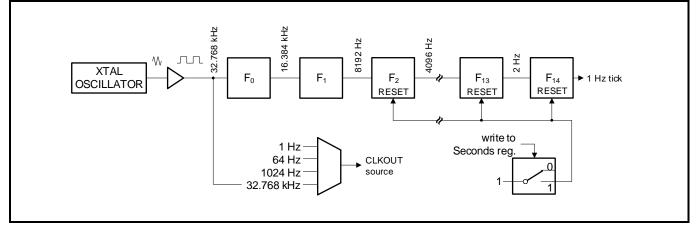
The STOP bit function will not affect the CLKOUT of 32.768 kHz (see also XTAL CLKOUT FREQUENCY SELECTION).


Scheme of the STOP bit function:

When STOP bit is set, the time registers can be set and do not increment until the STOP bit is released.

Setting the clock and calendar values using the STOP bit function:

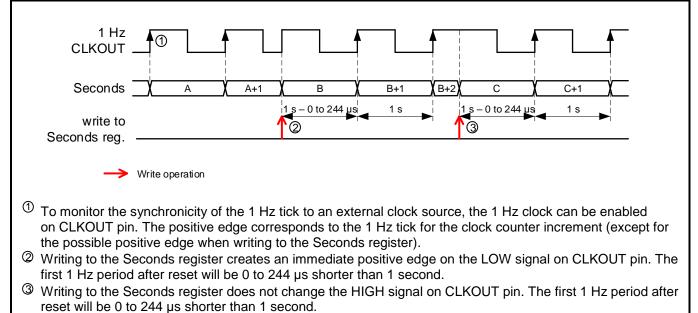
- 1. Set STOP bit to 1 to prevent a timer update while setting the time.
- 2. Write the desired clock and calendar values to the registers (year, month, date, weekday, hours, minutes and seconds). The 100th Seconds register is automatically cleared to 00 when setting the STOP bit to 1.
- 3. Release STOP bit to 0 to start the time circuits.
- 4. The first 1 Hz period is started at the I²C Acknowledge from RV-3032-C7 after writing to the Control 2 register.


4.21.2. WRITING TO SECONDS REGISTER

Writing to the Seconds register is used for a software-based accurate and safe starting of the time circuits (synchronization).

When writing to the Seconds register, the clock prescaler frequencies from 4096 Hz to 1 Hz are reset and an eventual present memorized 1 Hz update is also reset. The 100th Seconds register (100 Hz) is reset to 0 also. Because the upper stage of the prescaler is not reset (8192 Hz) and the I²C interface is asynchronous, the first 1 Hz period after reset will be 0 to 244 µs shorter than 1 second. Resetting the prescaler affects the length of the current clock period of all subsequent peripherals (clock and calendar, XTAL CLKOUT, timer clock, update timer clock, temperature sensing and EVI input filter).

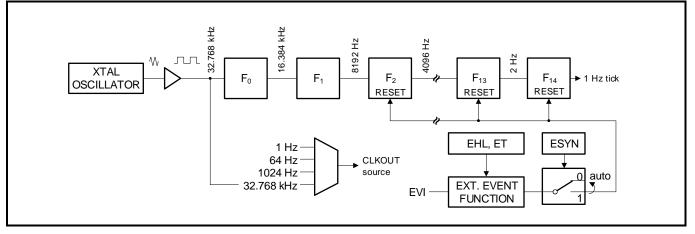
Writing to the Seconds register will not affect the CLKOUT of the 32.768 kHz (see also XTAL CLKOUT FREQUENCY SELECTION).


Scheme of the reset function when writing to the Seconds register:

Setting the clock and calendar values using the reset function when writing to the Seconds register:

- 1. Write the desired clock and calendar values (within 950 ms) to the registers (seconds, minutes, hours, weekday, date, month and year).
- 2. The first 1 Hz period is started at the I²C Acknowledge from RV-3032-C7 after writing to the Seconds register.

Timing of the reset function when writing to the Seconds register:

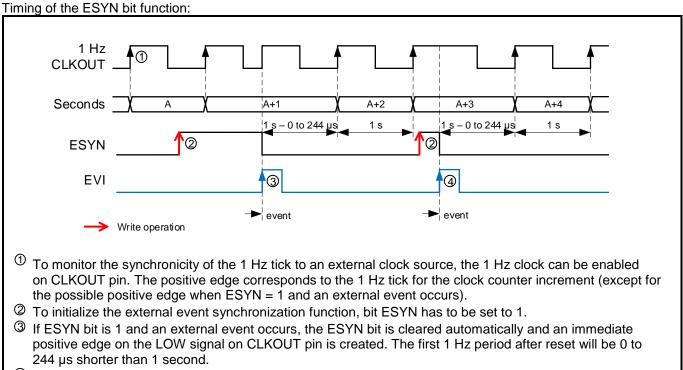

4.21.3. ESYN BIT FUNCTION

The External Event (EVI) Synchronization bit ESYN is used for an external event triggered highly accurate time adjustment (synchronizing).

If the ESYN bit is 1 and in case of an External Event detection on the EVI pin, the clock prescaler frequencies from 4096 Hz to 1 Hz are reset and an eventual present memorized 1 Hz update is also reset. The 100th Seconds register (100 Hz) is reset to 0 also. Because the upper stage of the prescaler is not reset (8192 Hz) and the I²C interface is asynchronous, the first 1 Hz period after reset will be 0 to 244 µs shorter than 1 second. Resetting the prescaler affects the length of the current clock period of all subsequent peripherals (clock and calendar, XTAL CLKOUT, timer clock, update timer clock, temperature sensing and EVI input filter). After the event detection, the ESYN bit is reset to 0 automatically.

The external triggered time adjustment will not affect the CLKOUT of the 32.768 kHz (see also XTAL CLKOUT FREQUENCY SELECTION).

Scheme of the ESYN bit function:



Setting the clock and calendar values synchronous to an External Event detection on EVI pin:

- 1. Initialize the External Event Function according to USE OF THE EXTERNAL EVENT INTERRUPT with bit ESYN set to 1.
- 2. When interrupt pin INT is triggered by the External Event Function, write the desired clock and calendar values to the registers (year, month, date, weekday, hours, minutes and seconds). The 100th Seconds register is cleared to 00 automatically.
- Note that when you write to the Seconds register, the time is synchronized again.
- 3. After the event detection, the ESYN bit is reset to 0 automatically.

See also EXTERNAL EVENT INTERRUPT FUNCTION.

Hint: The ESYN bit function does first the Time Stamp EVI, then clears 100th Seconds register.

If ESYN bit is 1 and an external event occurs, the ESYN bit is cleared automatically and the HIGH signal on CLKOUT pin does not change. The first 1 Hz period after reset will be 0 to 244 µs shorter than 1 second.

4.22. USER PROGRAMMABLE PASSWORD

After a Power up and the first refreshment of $t_{PREFR} = ~66$ ms, the Password PW registers (RAM 39h to 3Ch) are reset to 00h and the value in EEPWE (EEPROM CAh) and the values in the EEPROM Password EEPW registers (EEPROM C6h to C9h) are copied from EEPROM to the corresponding RAM mirror.

The first four Password registers (PW), in case of the use of the function (enabled by writing 255 into the EEPROM Password Enable register EEPWE), are used to write the 32-Bit Password necessary to be able to write in all writable registers that have the convention WP (time, control, user RAM, configuration EEPROM and user EEPROM registers). The 32-Bit Password PW is compared to the 32 bits stored in the EEPROM Password EEPW (it is not compared to the corresponding RAM mirror) (see PASSWORD REGISTERS, EEPROM PASSWORD REGISTERS and EEPROM PASSWORD ENABLE REGISTER).

Caution: The number of possible passwords is $2^{32} \approx 4.3 \times 10^9 = 4.3$ billion.

4.22.1. ENABLE/DISABLE WRITE PROTECTION

If the write protection function is enabled by writing 255 in register EEPWE (EEPROM CAh), it remains possible to read all the registers except the EEPROM registers. The EEPROM registers cannot be read because it cannot be written to the EE Address and EE Command registers. If the function is not enabled, read and write are possible for all corresponding registers.

If the write protection function is enabled, it is necessary to first write the correct 32-Bit Password PW (PW = EEPW) (Unlock), before any attempt to write in the RAM registers and to read and write in the EEPROM registers.

Once the user is finished with the write access and subsequently the write protection is still enabled or enabled again (by writing 255 in EEPROM register EEPWE), it is necessary to write an incorrect password (PW \neq EEPW) into the Password PW registers in order to write-protect (Lock) the registers. See program sequences below and FLOWCHART.

Enable write protection:

- 1. Initial state: WP-Registers are Not write-protected (EEPWE ≠ 255) (Reference password is stored in the EEPROM Password EEPW)
- 2. Disable automatic refresh by setting EERD = 1
- 3. Enable password function by entering EEPWE = 255 (RAM)
- 4. Update EEPROM (all Configuration RAM → EEPROM) by writing 11h to EECMD
- 5. Enable automatic refresh by setting EERD = 0
- 6. Enter an incorrect password PW ($PW \neq EEPW$) to lock the device
- 7. Final state: WP-Registers are Write-protected by password (EEPWE = 255)

Disable write protection:

- 1. Initial state: WP-Registers are Write-protected by password (EEPWE = 255). (Reference password is stored in the EEPROM Password EEPW)
- 2. Enter the correct password PW (PW = EEPW) to unlock write protection
- 3. Disable automatic refresh by setting EERD = 1
- 4. Disable password function by entering EEPWE \neq 255) (RAM)
- 5. Update EEPROM (all Configuration RAM → EEPROM) by writing 11h to EECMD
- 6. Enable automatic refresh by setting EERD = 0
- 7. Final state: WP-Registers are Not write-protected (EEPWE ≠ 255)

Hint: The EEPROM values of the reference password in the EEPROM Password EEPW registers can be READ with the Read one EEPROM byte command (writing 22h to EECMD) when in Unlocked state (registers not write-protected). This option is useful if it is not certain which password is written in the EEPW before the write protection function is enabled. The RAM mirror from the EEPW registers can never be read.

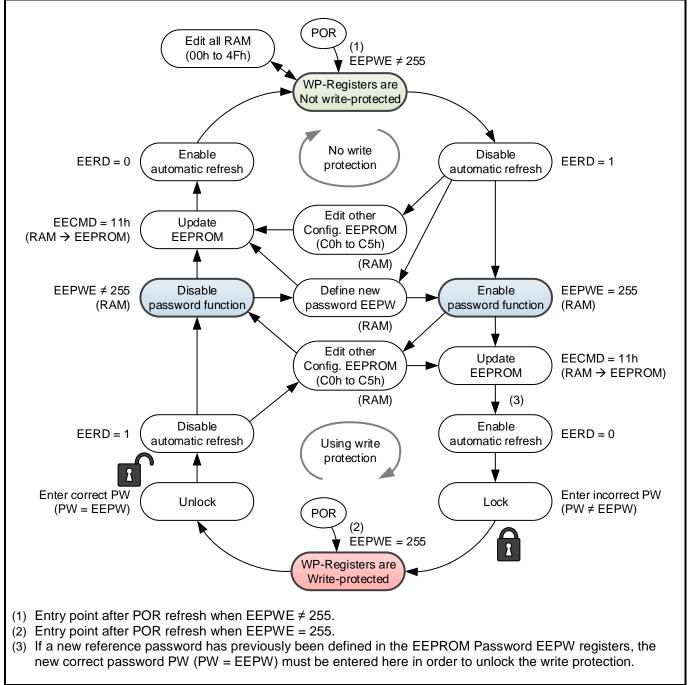
4.22.2. CHANGING PASSWORD

To code a new password, the user has to first enter the current (correct) Password PW (PW = EEPW) into the registers 39h to 3Ch, if the WP-Registers are write protected, and then write a value not equal to all 1 (value \neq 255) in the EEPWE register (EEPROM CAh) to unlock write protection, and then write the new reference password EEPW into the EEPROM registers C6h to C9h and writing all 1 (value = 255) in the EEPWE register to enable password function. See program sequences below and FLOWCHART.

Change password if password function is enabled (EEPWE = 255):

- 1. Initial state: WP-Registers are Write-protected by old reference EEPROM Password EEPW
- 2. Enter old, correct password PW (PW = EEPW) to unlock write protection
- 3. Disable automatic refresh by setting EERD = 1
- 4. Disable password function by entering EEPWE \neq 255 (RAM)
- 5. Define a new reference password in the EEPW registers (RAM)
- 6. Enable the password function by entering EEPWE = 255 (RAM)
- 7. Update EEPROM (all Configuration RAM → EEPROM) by writing 11h to EECMD
- 8. Enter new, correct password PW (PW = EEPW) to unlock write protection
- 9. Enable automatic refresh by setting EERD = 0
- 10. Enter an incorrect password PW (PW ≠ EEPW) to lock the device
- 11. Final state: WP-Registers are Write-protected by new reference EEPROM Password EEPW


Change password if password function is disabled (EEPWE ≠ 255):


- 1. Initial state: Old reference password is stored in the EEPROM Password EEPW
- 2. Disable automatic refresh by setting EERD = 1
- 3. Define a new reference password in the EEPW registers (RAM)
- 4. Update EEPROM (all Configuration RAM → EEPROM) by writing 11h to EECMD
- 5. Enable automatic refresh by setting EERD = 0
- 6. Final state: New reference password is stored in the EEPROM Password EEPW

Note that the EEPROM password EEPW = 0000000h is not a real password, because after POR the password PW is also 0000000h (PW = EEPW) and although the password function is enabled after POR refresh (EEPW = 255) the PW-Registers are unlocked.

4.22.3. FLOWCHART

The following flowchart describes the programming of the enabling and disabling of the register write protection by user password and the changing of the user password and the other Configuration EEPROM registers (C0h to C5h) if write protection is enabled or disabled. In this example the Update EEPROM command (writing 11h to EECMD) is applied to write (store) data from all Configuration RAM mirror bytes (addresses C0h to CAh) into the corresponding Configuration EEPROM bytes. See also USE OF THE CONFIGURATION REGISTERS.

5. TEMPERATURE COMPENSATION

5.1. XTAL MODE FREQUENCIES

Xtal 32.768 kHz

The Xtal 32.768 kHz clock is not temperature compensated. Due to its negative temperature coefficient with a parabolic frequency deviation, a change of up to -150 ppm across the entire operating temperature range from -40°C to +85°C can result. The 32.768 kHz oscillator frequency on all devices is tested not to exceed a time deviation of ± 20 ppm (parts per million) at 25°C.

Frequencies from 4096 Hz to 64 Hz

These frequencies are digitally temperature compensated with a Time Accuracy of ± 3 ppm over the entire temperature range from -40°C to +85°C. The clock at the 16.384 kHz level of the divider chain is modified by adding or subtracting 32.768 kHz level pulses. The pulses are added or subtracted according to the expected frequency deviation computed by the temperature compensation algorithm. The digital compensation method (adding and subtracting clock pulses) is affecting the cycle-to-cycle jitter of the digitally compensated frequencies shown below.

- 4096 Hz (Periodic Countdown Timer Interrupt)
- 1024 Hz (CLKOUT)
- 100 Hz (External Event Interrupt)
- 64 Hz (CLKOUT and Periodic Countdown Timer Interrupt)

Aging compensation can be done with the OFFSET value (see AGING CORRECTION).

1 Hz and Clock / Calendar

The 1 Hz clock is temperature compensated and using both, digital coarse compensation and digital fine adjustment. The Time Accuracy and the Frequency Accuracy is ± 3 ppm for every 1 Hz period over the entire temperature range from -40°C to +85°C. The temperature compensation algorithm adjusts every 1 Hz period with a resolution of about 0.1 ppm. This precise and accurate 1 Hz clock is used to increment all subsequent clock and calendar registers (see TIME ACCURACY VS. TEMPERATURE CHARACTERISTICS).

Aging compensation can be done with the OFFSET value (see AGING CORRECTION).

5.2. COMPENSATION VALUES

Each device is factory calibrated over the full temperature range, and the individual compensation values are stored in the EEPROM of the Digital Temperature Compensation Unit (DTCU). This EEPROM is not accessible for the user.

5.3. AGING CORRECTION

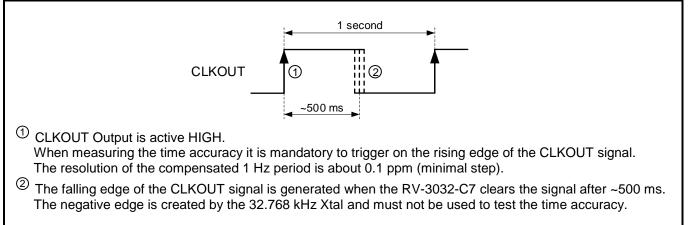
An aging adjustment or accuracy tuning can be done with the OFFSET value. The correction is purely digital and has only the effect of shifting the time vs. temperature curve vertically up or down. It has no effect on the time vs. temperature characteristics of the final frequency. The OFFSET value contains a two's complement number with a range of -32 to +31 adjustment steps. The minimal correction step (one LSB) is $\pm 1/(32768 \times 128) = \pm 0.2384$ ppm. The maximum correction range is roughly ± 7.4 ppm. Note that the signed offset value OFFSET corresponds to the actual offset value of the measured frequency. The user has access to this field (see EEPROM OFFSET REGISTER).

5.3.1.OFFSET VALUE DETERMINATION

The OFFSET value is determined by the following process:

- 1. Set the OFFSET field to 0 to ensure correction is not occurring.
- 2. Select the 1 Hz frequency on the CLKOUT pin.
- Measure the frequency Fmeas at the output pin in Hz. See MEASURING TIME ACCURACY AT CLKOUT PIN.
- 4. Compute the offset value required in ppm: POffset = $((Fmeas 1) \times 1'000'000)$
- 5. Compute the offset value in steps: Offset = POffset/(1/(32768 × 128)) = POffset/(0.2384)
- 6. If Offset > 31, the frequency is too high to be corrected.
- 7. Else if $0 \le Offset \le 31$, set OFFSET = Offset
- 8. Else if $-32 \leq \text{Offset} \leq -1$, set OFFSET = Offset + 64
- 9. Else the frequency is too low to be corrected.

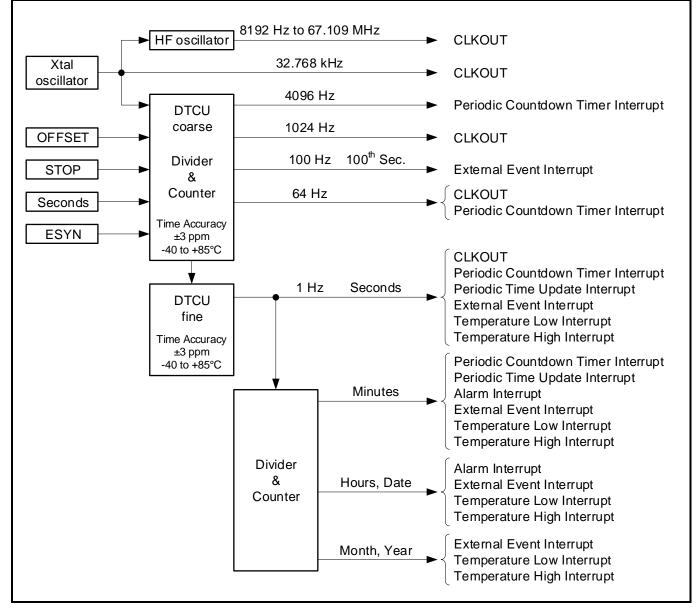
Examples:


- If 1.0000012 Hz is measured when the 1 Hz clock is selected, the offset is +0.0000012 Hz, which is +0.0000012 Hz / 10⁻⁶ Hz = +1.2 ppm. The positive offset value is then calculated as follows: +1.2 ppm / 0.2384 ppm = +5.03, the rounded integral part is +5. In binary, OFFSET = 000101.
- If 0.9999949 Hz is measured when the 1 Hz clock is selected, the offset is -0.0000051 Hz, which is -0.0000051 Hz / 10⁻⁶ Hz = -5.1 ppm. The negative offset value is then calculated as follows: -5.1 ppm / 0.2384 ppm = -21.39, the rounded integral part is -21. The unsigned value is then: -21 +64 = +43. In binary, OFFSET = 101011.

5.3.2. MEASURING TIME ACCURACY AT CLKOUT PIN

The simplest method to verify the time accuracy of the Digital Temperature Compensation Unit (DTCU) is to measure the compensated 1 Hz frequency at the CLKOUT pin. The 1 Hz clock frequency contains digitally temperature compensated clocks with digital fine adjustment and represents the overall time accuracy of the device.

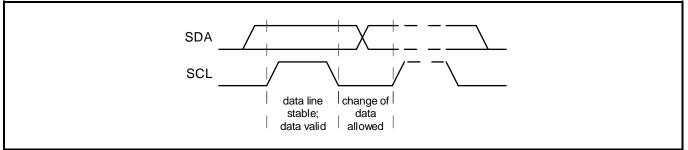
- 1. Select the 1 Hz frequency at CLKOUT pin:
 - a. Set OS bit to 0 to select XTAL mode (EEPROM C3h).
 - b. Set FD field to 11 to select 1 Hz (EEPROM C3h).
 - c. Set NCLKE bit to 0 to directly enable square wave output on CLKOUT pin.
- 2. Measuring equipment and setup:
 - a. Use a high-precision universal counter to observe the 1 Hz time accuracy on CLKOUT pin.
 - b. Trigger on the rising edge of the hybrid signal (gate time ≥ 1 second). Each 1 Hz clock measured at the rising edge fully representing the accuracy of the DTCU.


1 Hz time accuracy at CLKOUT pin (hybrid signal):

Note that the Periodic Time Update Interrupt function (1 Second or 1 Minute Update) as well as the other interrupt functions cannot be used for short-term time accuracy measurement as rising and falling edges of the INT signal are generated by the 32.768 kHz Xtal signal.

5.4. CLOCKING SCHEME

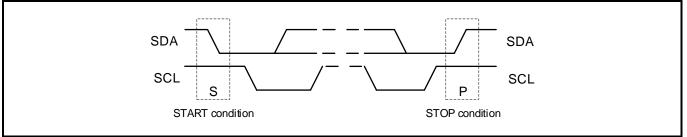
Clocking Scheme with CLKOUT and Interrupts:


6. I²C INTERFACE

The I²C interface is for bidirectional, two-line communication between different ICs or modules. The RV-3032-C7 is accessed at addresses A2h/A3h, and supports Fast Mode (up to 400 kHz). The I²C interface consists of two lines: one bi-directional data line (SDA) and one clock line (SCL). Both lines are connected to a positive supply via pull-up resistors. Data transfer is initiated only when the interface is not busy.

6.1. BIT TRANSFER

One data bit is transferred during each clock pulse. The data on the SDA line remains stable during the HIGH period of the clock pulse, as changes in the data line at this time are interpreted as a control signals. Data changes should be executed during the LOW period of the clock pulse (see Figure below).


Bit transfer:

6.2. START AND STOP CONDITIONS

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH, is defined as the START condition (S). A LOW-to-HIGH transition of the data line, while the clock is HIGH, is defined as the STOP condition (P) (see Figure below).

Definition of START and STOP conditions:

A START condition which occurs after a previous START but before a STOP is called a Repeated START condition, and functions exactly like a normal STOP followed by a normal START.

Caution:

When communicating with the RV-3032-C7 module, the series of operations from transmitting the START condition to transmitting the STOP condition should occur within **950 ms**.

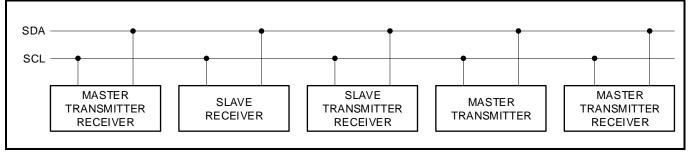
If this series of operations requires **950 ms or longer**, the I²C-bus interface will be automatically cleared and set to standby mode by the bus timeout function of the RV-3032-C7. Note with caution that both write and read operations are invalid for communications that occur during or after this auto clearing operation. When writing: no acknowledge will occur. When reading: FFh will be read.

Restarting of communications begins with transfer of the START condition again.

The I²C auto increment Address Pointer is not reset by the I²C STOP condition nor by the internal stop forced after timeout.

6.3. DATA VALID

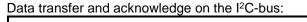
After a START condition, SDA is stable for the duration of the high period of SCL. The data on SDA may be changed during the low period of SCL. There is one clock pulse per bit of data. Each data transfer is initiated with a START condition and terminated with a STOP condition. The number of data bytes transferred between the START and STOP conditions is not limited (however, the transfer time must be no longer than 950 ms). The information is transmitted byte-wise and each receiver acknowledges with a ninth bit.

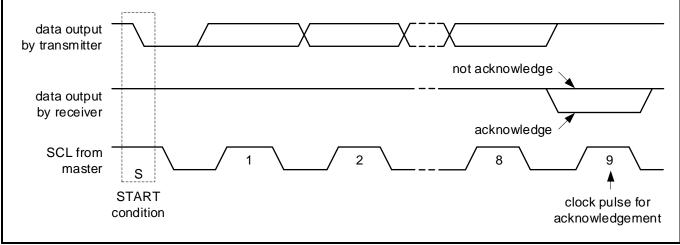

6.4. SYSTEM CONFIGURATION

Since multiple devices can be connected with the I²C-bus, all I²C-bus devices have a fixed and unique device number built-in to allow individual addressing of each device.

The device that controls the I²C-bus is the Master; the devices which are controlled by the Master are the Slaves. A device generating a message is a Transmitter; a device receiving a message is the Receiver. The RV-3032-C7 acts as a Slave-Receiver or Slave-Transmitter.

Before any data is transmitted on the I²C-bus, the device which should respond is addressed first. The addressing is always carried out with the first byte transmitted after the START procedure. The clock signal SCL is only an input signal, but the data signal SDA is a bidirectional line.


System configuration:



6.5. ACKNOWLEDGE

The number of data bytes transferred between the START and STOP conditions from transmitter to receiver is unlimited (however, the transfer time must be no longer than 950 ms). Each byte of eight bits is followed by an acknowledge cycle.

- A slave receiver, which is addressed, must generate an acknowledge cycle after the reception of each byte.
- Also a master receiver must generate an acknowledge cycle after the reception of each byte that has been clocked out of the slave transmitter.
- The device that acknowledges must pull-down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge-related clock pulse (set-up and hold times must be taken into consideration).
- A master receiver must signal an end of data to the transmitter by not generating an acknowledge cycle on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a STOP condition.

6.6. SLAVE ADDRESS

On the I²C-bus the 7-bit slave address 1010001b is reserved for the RV-3032-C7. The entire I²C-bus slave address byte is shown in the following table.

		SI	ave addres	SS			R/W	Transfer data	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Transfer data	
1	0	4	0	0	0	1	1(R)	A3h (read)	
l	0	I	0	0	0	I	0 (W)	A2h (write)	

After a START condition, the I²C slave address has to be sent to the RV-3032-C7 device. The R/W bit defines the direction of the following single or multiple byte data transfer. The 7-bit address is transmitted MSB first. If this address is 1010001b, the RV-3032-C7 is selected, the eighth bit indicates a read (R/W = 1) or a write (R/W = 0) operation (results in A3h or A2h) and the RV-3032-C7 supplies the ACK. The RV-3032-C7 ignores all other address values and does not respond with an ACK.

In the write operation, a data transfer is terminated by sending either the STOP condition or the START condition of the next data transfer.

6.7. WRITE OPERATION

Master transmits to Slave-Receiver at specified address. The Register Address is an 8-bit value that defines which register is to be accessed next. After writing one byte, the Register Address is automatically incremented by 1.

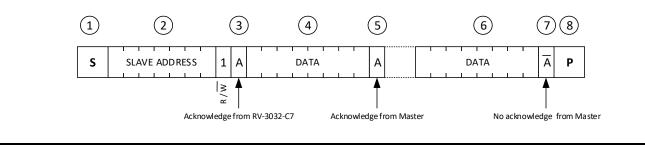
Master writes to slave RV-3032-C7 at specific address:

- 1) Master sends out the START condition.
- 2) Master sends out Slave Address, A2h for the RV-3032-C7; the R/W bit is a 0 indicating a write operation.
- 3) Acknowledgement from RV-3032-C7.
- 4) Master sends out the Register Address to RV-3032-C7.
- 5) Acknowledgement from RV-3032-C7.
- 6) Master sends out the Data to write to the specified address in step 4).
- 7) Acknowledgement from RV-3032-C7.
- Steps 6) and 7) can be repeated if necessary. The address is automatically incremented in the RV-3032-C7.
- 9) Master sends out the STOP Condition.

	2	3	4	5	6	7	8	9
S	SLAVE ADDRESS	0 A	REGISTER ADDRESS	A	Acknowledge from RV-3032-0	A	DATA A	Р

6.8. READ OPERATION AT SPECIFIC ADDRESS

Master reads data from slave RV-3032-C7 at specific address:


- 1) Master sends out the START condition.
- 2) Master sends out Slave Address, A2h for the RV-3032-C7; the R/W bit is a 0 indicating a write operation.
- 3) Acknowledgement from RV-3032-C7.
- 4) Master sends out the Register Address to RV-3032-C7.
- 5) Acknowledgement from RV-3032-C7.
- 6) Master sends out the Repeated START condition (or STOP condition followed by START condition)
- 7) Master sends out Slave Address, A3h for the RV-3032-C7; the R/W bit is a 1 indicating a read operation. 8) Acknowledgement from RV-3032-C7.
- At this point, the Master becomes a Receiver and the Slave becomes the Transmitter.
- 9) The Slave sends out the Data from the Register Address specified in step 4).
- 10) Acknowledgement from Master.
- 11) Steps 9) and 10) can be repeated if necessary.
- The address is automatically incremented in the RV-3032-C7.
- 12) The Master, addressed as Receiver, can stop data transmission by not generating an acknowledge on the last byte that has been sent from the Slave-Transmitter. In this event, the Slave-Transmitter must leave the data line HIGH to enable the Master to generate a STOP condition.
- 13) Master sends out the STOP condition.

	2	3	4	56	7	8	9	10	(11)	12(1	13)
S	SLAVE ADDRESS	0 A	REGISTER ADDRESS	A S	SLAVE ADDRESS	1 A	DATA	A	DATA		Р
		≷ ≷		Repeated START		× _×		≜		↑	
			Acknowled	ge from RV-303	2-C7		Ac	knowledge from Ma	ister	No acknowledge from	n Master

6.9. READ OPERATION

Master reads data from slave RV-3032-C7 immediately after first byte:

- 1) Master sends out the START condition.
- 2) Master sends out Slave Address, A3h for the RV-3032-C7; the R/W bit is a 1 indicating a read operation.
- 3) Acknowledgement from RV-3032-C7.
- At this point, the Master becomes a Receiver and the Slave becomes the Transmitter.
- 4) The RV-3032-C7sends out the Data from the last accessed Register Address incremented by 1.
- 5) Acknowledgement from Master.
- 6) Steps 4) and 5) can be repeated if necessary.
- The address is automatically incremented in the RV-3032-C7.
- 7) The Master, addressed as Receiver, can stop data transmission by not generating an acknowledge on the last byte that has been sent from the Slave-Transmitter. In this event, the Slave-Transmitter must leave the data line HIGH to enable the Master to generate a STOP condition.
- 8) Master sends out the STOP condition.

6.10. I²C-BUS IN SWITCHOVER CONDITION

To save power when the RV-3032-C7 is in VBACKUP Power state the bus I^2 C-bus interface is automatically disabled (high impedance) and reset. Therefore the communication via I^2 C interface should be terminated before the supply is switched from V_{DD} to V_{BACKUP}. When the bus communication is not terminated in a proper way, the time counters get corrupted.

If the I²C communication was terminated uncontrolled, the I²C has to be reinitialized by sending a STOP followed by a START after the device switched back from VBACKUP Power state to VDD Power state.

7. ELECTRICAL SPECIFICATIONS

7.1. ABSOLUTE MAXIMUM RATINGS

The following Table lists the absolute maximum ratings.

Absolute Maximum Ratings according to IEC 60134:

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
V _{DD}	Power Supply Voltage		-0.3		6.0	V
VI	Input voltage	Input Pin	-0.3		V _{DD} +0.3	V
Vo	Output voltage	Output Pin	-0.3		V _{DD} +0.3	V
l _l	Input current		-10		10	mA
lo	Output current		-10		10	mA
N/	ESD Voltage	HBM ⁽¹⁾			±2000	V
VESD		MM ⁽²⁾			±200	V
I _{LU}	Latch-up Current	Jedec ⁽³⁾			±100	mA
T _{OPR}	Operating Temperature		-40		85	°C
T _{STO}	Storage Temperature		-55		125	°C
T _{PEAK}	Maximum reflow condition	JEDEC J-STD-020C			265	°C
⁽¹⁾ HBM: Hun	nan Body Model, according to JE	SD22-A114.			•	
	ine Model, according to JESD22					
(3) Latch-up t	esting, according to JESD78., Cla	ass I (room temperature), level A (1	00 mA)			

7.2. OPERATING PARAMETERS

For this Table, TA = -40 to +85°C unless otherwise indicated. VDD = 1.4 to 5.5 V, TYP values at 25°C and 3.0 V.

Operating Parameters:

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT	
Supplies							
		Time-keeping mode ⁽¹⁾	1.2		5.5		
		Minimum time-keeping		1.0	1.2		
	David Oversky Maltana	voltage ⁽²⁾		1.0	1.2	- v	
V _{DD}	Power Supply Voltage	Oscillator start-up voltage V _{START}	1.2			V	
		I ² C-bus (100 kHz)	1.4		5.5		
		I ² C-bus (400 kHz)	2.0		5.5	1	
		Time-keeping mode ⁽¹⁾	1.2		5.5		
VBACKUP	Backup Supply Voltage	Minimum time-keeping		1.0	1.0	.2 V	
		voltage ⁽²⁾		1.0	1.2		
VLOW	Voltage low detection		1.1	1.2	1.3	V	
V LOVV	(VLF flag) ⁽³⁾		1.1			, i	
		V _{DD} = 1.2 V, T _A = 25°C		160	210		
		$V_{DD} = 3.0 \text{ V}, \text{T}_{\text{A}} = 25^{\circ}\text{C}$		160	210		
	V _{DD} supply current timekeeping	$V_{DD} = 5.0 \text{ V}, \text{T}_{\text{A}} = 25^{\circ}\text{C}$		165	220		
I _{DD}	I ² C-bus inactive, CLKOUT	$V_{DD} = 1.2 V,$			700	nA	
00	disabled, average current ⁽⁴⁾	$T_{OPR} = -40 \text{ to } +85^{\circ}\text{C}$ $V_{DD} = 3.0 \text{ V},$					
		$V_{DD} = 3.0 V,$ $T_{OPR} = -40 \text{ to } +85^{\circ}\text{C}$			750		
		$V_{DD} = 5.0 \text{ V}.$				-	
		$T_{OPR} = -40 \text{ to } +85^{\circ}\text{C}$			800		
	V _{DD} supply current during	V_{DD} = 1.4 V, SCL = 100 kHz		2	15	μA	
IDD:12C	I ² C burst read/write, CLKOUT	V _{DD} = 3.0 V, SCL = 400 kHz		5	40		
	disabled ⁽⁵⁾	V _{DD} = 5.0 V, SCL = 400 kHz		7	60		
I _{TSP}	Supply current temperature sensing peak (I _{DD} or I _{BACKUP})	Typical duration: $t_{TSP} = 1.3 \text{ ms}$		14	60	μA	
I _{DD:DSM}	V _{DD} supply current in Direct Switching Mode I ² C-bus inactive, CLKOUT disabled	$V_{DD} = 3.0 \text{ V}, T_A = 25^{\circ}\text{C},$ $V_{BACKUP} < V_{DD}$		210	330		
I _{DD:LSM}	V _{DD} supply current in Level Switching Mode I ² C-bus inactive, CLKOUT disabled	V _{DD} = 3.0 V, T _A = 25°C		230	360	nA	
BACKUP:DSM	V _{BACKUP} supply current in Direct Switching Mode	$V_{BACKUP} = 3.0 \text{ V}, \text{T}_{A} = 25^{\circ}\text{C},$ $V_{DD} < V_{BACKUP}$		210	330]	
IBACKUP:LSM	VBACKUP Supply current in Level Switching Mode	$ \begin{array}{l} V_{\text{BACKUP}} = 3.0 \text{ V}, \text{T}_{\text{A}} = 25^{\circ}\text{C}, \\ V_{\text{DD}} < V_{\text{TH:LSM}}(2.0 \text{ V}) \\ V_{\text{DD}} = 3.0 \text{ V}, \text{F}_{\text{CLKOUT}} = 32.768 \end{array} $		230	360		
$\Delta I_{DD:CK32}$		kHz, $C_L = 10 \text{ pF}$		1		μA	
ΔI _{DD:CK1024}		$V_{DD} = 3.0 \text{ V}, F_{CLKOUT} = 1024 \text{ Hz}, C_L = 10 \text{ pF}$		30			
ΔI _{DD:CK64}	 Additional V_{DD} supply current⁽⁶⁾ 	$V_{DD} = 3.0 \text{ V}, \text{ F}_{CLKOUT} = 64 \text{ Hz},$ $C_L = 10 \text{ pF}$		2		nA	
ΔI _{DD:CK1}		$V_{DD} = 3.0 \text{ V}, \text{ F}_{CLKOUT} = 1 \text{ Hz},$ $C_L = 10 \text{ pF}$		0.03			

⁽¹⁾ Clocks operating and RAM registers retained. Including temperature sensing and compensation.

⁽²⁾ Clocks operating and RAM registers retained. Temperature sensing and compensation is off.

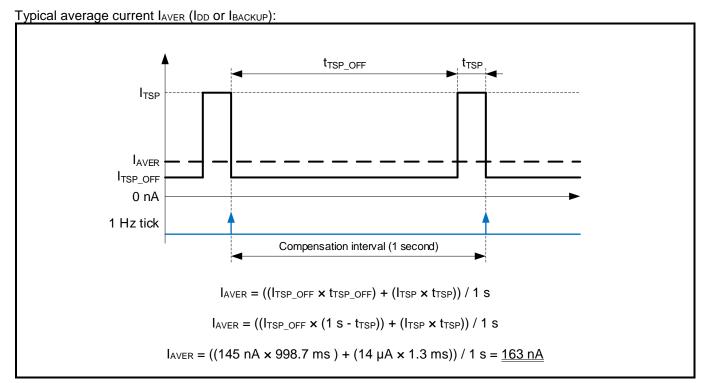
 $^{(3)}$ If internal voltage is below V_{LOW}, temperature compensation is stopped. The data may no longer be valid.

 $^{(4)}$ All inputs and outputs are at 0 V or $V_{\text{DD}}.$

(5) 2.2 kΩ pull-up resistors on SCL/SDA, excluding external peripherals and pull-up resistor current. All other inputs (besides SDA and SCL) are at 0 V or V_{DD}. Test conditions: Continuous burst read/write, 55h data pattern, 25 µs between each data byte, 20 pF load on each bus pin.

⁽⁶⁾ When CLKOUT is enabled the additional V_{DD} supply current ΔI_{DD} can be calculated as follows: $\Delta I_{DD} = C_L \times V_{DD} \times f_{OUT}$, e.g. $\Delta I_{DD} = 10 \text{ pF} \times 3.0 \text{ V} \times 32'768 \text{ Hz} = 980 \text{ nA} \approx 1 \text{ µA}$

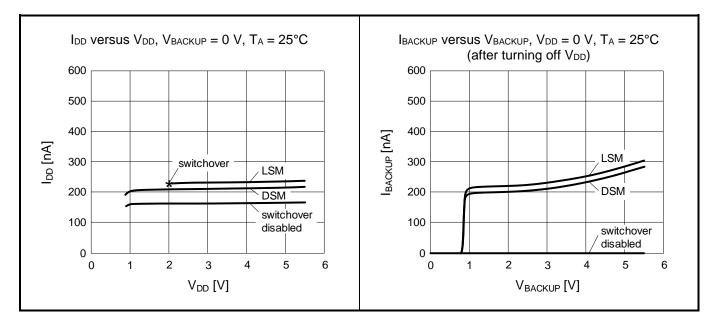
For this Table, $T_A = -40$ to $+85^{\circ}$ C unless otherwise indicated. $V_{DD} = 1.4$ to 5.5 V, TYP values at 25°C and 3.0 V.

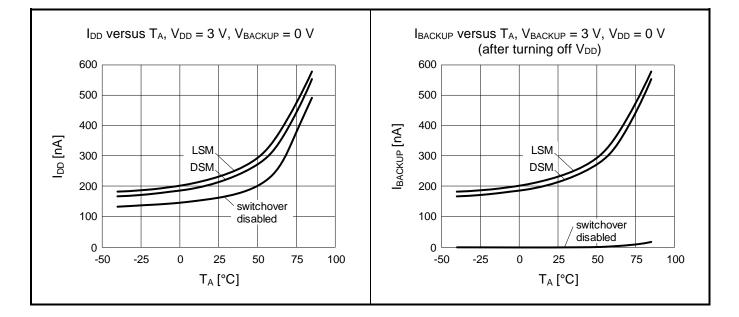

Inputs V _{IH} V _{IL} I _{ILEAK}	HIGH level input voltage					
V _{IL}	HIGH level input voltage					
		V _{DD} = 1.4 V to 5.5 V	0.8 V _{DD}			
I _{ILEAK}	LOW level input voltage	Pins: SCL, SDA, EVI			0.2 V _{DD}	V
	Input leakage current	$V_{SS} \le V_I \le V_{DD}$			±0.5	μA
Cı	Input capacitance	$V_{DD} = 3.0 \text{ V}, \text{ T}_{A} = 25^{\circ}\text{C}$ f = 1 MHz			7	pF
Outputs						
	HIGH level output voltage	$V_{DD} = 1.4 \text{ V to} < 2.7 \text{ V},$				
V _{OH:CLK}	CLKOUT \leq 32.768 kHz,	I _{OH} = -0.1 mA	0.9 V _{DD}			
	$C_{LMAX} = 15 \text{ pF}$	$V_{DD} \ge 2.7 \text{ V}, I_{OH} = -1.0 \text{ mA}$				
	LOW level output voltage,	$V_{DD} = 1.4 \text{ V to} < 2.7 \text{ V},$				
V _{OL:CLK}	CLKOUT ≤ 32.768 kHz,	$I_{OL} = 0.1 \text{ mA}$			0.1 V _{DD}	
	C _{LMAX} = 15 pF	$V_{DD} \ge 2.7 \text{ V}, I_{OL} = 1.0 \text{ mA}$				V
N/	HIGH level output voltage CLKOUT > 32.768 kHz to	$V_{DD} = 2.7 \text{ V} \text{ to } 5.5 \text{ V},$	0.9 V _{DD}			
V _{OH:CLK}	$52 \text{ MHz}, C_{LMAX} = 10 \text{ pF}$	I _{OH} = -2.0 mA	0.9 V _{DD}			
	LOW level output voltage,	<u> </u>			1	1
V _{OL:CLK}	CLKOUT > 32.768 kHz to	$V_{DD} = 2.7 \text{ V to } 5.5 \text{ V},$ $I_{OL} = 2.0 \text{ mA}$			$0.1 V_{\text{DD}}$	
	52 MHz, C _{LMAX} = 10 pF					
	CLKOUT rise/fall time	$F_{CLKOUT} \leq 32.768 \text{ kHz},$				
tr, tf	0.1 V_{DD} to 0.9 V_{DD}	C _L = 15 pF 32.768 kHz < F _{CLKOUT} ≤ 52 MHz,			9.5	ns
	$V_{DD} = 2.7 \text{ V} \text{ to } 5.5 \text{ V}$	$C_L = 10 \text{ pF}$				
		$V_{DD} = 1.4 \text{ V}, I_{OL} = 2.0 \text{ mA}$			0.4	
V _{OL}	LOW level output voltage	$V_{DD} = 2.0 \text{ V}, I_{OL} = 3.0 \text{ mA}$			0.4	V
VOL	Pins: SDA, INT	$V_{DD} = 5.0 \text{ V}, I_{OL} = 3.0 \text{ mA}$			0.3	· ·
OLEAK	Output leakage current	$V_{\text{DD}} = 3.0 \text{ V}, \text{ NOL} = 3.0 \text{ Mix}$ $V_{\text{SS}} \le V_{\text{O}} \le V_{\text{DD}}$			±0.5	μA
-	Pins: SDA, INT	$V_{DD} = 3.0 \text{ V}, \text{ T}_{A} = 25^{\circ}\text{C}$			10.0	μπ
C _{OUT}	Output capacitance	$v_{DD} = 3.0 \text{ v}, T_A = 25 \text{ C}$ f = 1 MHz			7	pF
CL	CLKOUT load capacitance	F _{CLKOUT} ≤ 32.768 kHz			15	pF
C _L	(without C _{OUT})	32.768 kHz < F _{CLKOUT} ≤ 52 MHz			10	рг
δ _{CLKOUT}	CLKOUT duty cycle	$V_{DD} \ge 2.7 \text{ V}, \text{ F}_{CLKOUT} \le 52 \text{ MHz}$		50 ±10	• •	%
Power On Re	eset	· · · ·				
V _{POR}	POR detection threshold (PORF flag) ⁽⁷⁾		0.85	0.9	0.94	V
Trickle Char	ger with Charge Pump					
	Regulated voltage	V _{DD} ≥ 1.95 V,				
TCM 1.75 V	(CeraCharge™ mode)	LSM Mode (BSM = 10)	1.6	1.75	1.9	
TCM 3 V		$V_{DD} \ge 1.7 \text{ V}$ (for internal	2.75	2.95	3.15	V
TCM 4.4 V	Charge pump voltage	regulated voltage of 1.5 V), LSM Mode (BSM = 10)	4.1	4.35	4.6	
TCR 1 kΩ			0.6	0.9	1.2	1
TCR 2 kΩ		$V_{DD} = 5.0 \text{ V}, V_{BACKUP} = 3.0 \text{ V},$	1.6	1.9	2.2	1
TCR 7 kΩ	Current limiting resistor	$v_{DD} = 5.0 v$, $v_{BACKUP} = 5.0 v$, including internal schottky diode	5.5	6.8	8.5	kΩ
TCR 11 kΩ			9.2	11.4	12.8	1
V _F	Schottky diode voltage drop		3.2	0.25	12.0	V
		Y AC ELECTRICAL CHARACTERIS		0.20	1	v
Switchover (SEE AISO DAUNUP AIND RECUVER					<u> </u>
V _{HYST:DSM}	Switchover hysteresis in Direct Switching Mode	V_{DD} with respect to $V_{BACKUP} \ge 1.5$ V, V_{DD} slew rate = ±1 V/ms T_{OPR} = -40 to +85°C	50	60	130	mV
V _{TH:LSM}	Backup switchover threshold voltage in Level Switching Mode	V _{DD} falls below V _{TH:LSM}	1.8	2.0	2.2	V
V _{HYST:LSM}	Switchover hysteresis in Level Switching Mode	V_{DD} with respect to $V_{BACKUP} = 3.0$ V, V_{DD} slew rate = ±1 V/ms $T_{OPR} = -40$ to +85°C	80	100	200	mV

For this Table, T_A = -40 to +85°C unless otherwise indicated. V_{DD} = 1.4 to 5.5 V, TYP values at 25°C and 3.0 V.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
EEPROM Ch	aracteristics	• •			•	
V	V_{DD} read voltage (POR refresh and Automatic refresh)		1.1			
V _{DD:READ}	V_{DD} read voltage (Refresh and Read one EEPROM byte) (I ² C used)	V _{DD} Power state	1.4			V
V _{DD:WRITE}	V _{DD} write voltage		1.6			
V _{DD:EEF}	EEPROM write access failure detection (EEF flag)				1.5	V
t _{PREFR}	POR refresh time ⁽¹⁾	At power up		~66		
t _{AREFR}	Automatic refresh time ⁽¹⁾	Each 24 hours, EERD = 0		~1.4		
t _{UPDATE}	Update time ⁽¹⁾	EECMD = 11h		46		
t _{REFR}	Refresh time ⁽¹⁾	EECMD = 12h		1.4		ms
t _{WRITE}	Write to one EEPROM byte time ⁽¹⁾	EECMD = 21h	1.2	4.8	9	
t _{READ}	Read one EEPROM byte time ⁽¹⁾	EECMD = 22h		1.1		
n	λ_{1}	$V_{DD} = 3.0 \text{ V}, \text{T}_{\text{A}} = 25^{\circ}\text{C}$	10'000			ovelee
n _{CYCLE}	Write cycle endurance ⁽²⁾	$V_{DD} = 5.5 \text{ V}, \text{T}_{\text{A}} = 85^{\circ}\text{C}$	100			cycles
t _{RET}	Data retention time ⁽²⁾	$T_A = 55^{\circ}C$ (average)	10			vears

Operating Parameters (continued):

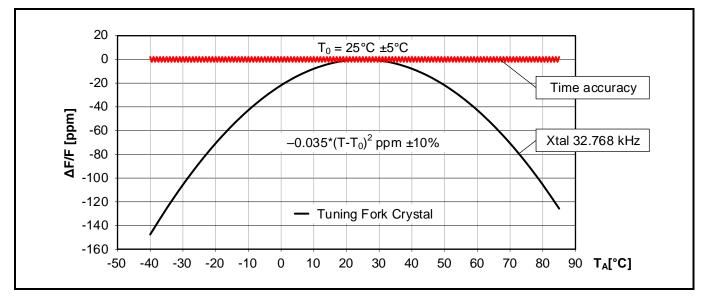

7.2.1.TEMPERATURE COMPENSATION AND CURRENT CONSUMPTION



RV-3032-C7

7.2.2.TYPICAL CHARACTERISTICS

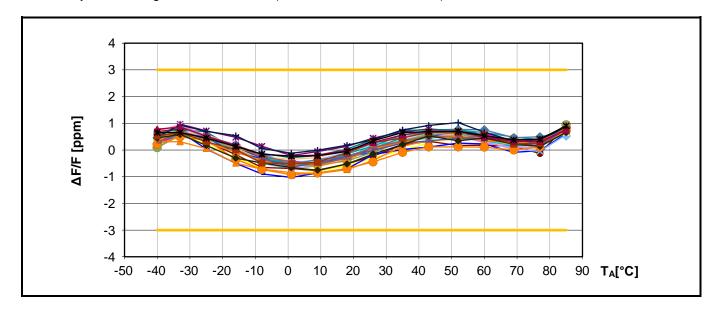
Typical characteristics for Direct Switching Mode (DSM), Level Switching Mode (LSM) and switchover disabled: For these diagrams, I²C-bus inactive, CLKOUT disabled.



7.3. XTAL OSCILLATOR PARAMETERS

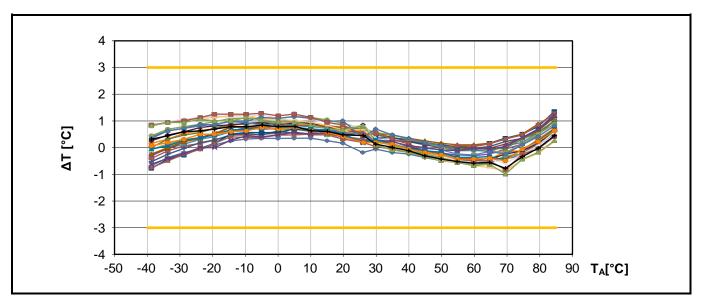
For this Table, $T_A = -40$ to $+85^{\circ}$ C unless otherwise indicated. $V_{DD} = 1.4$ to 5.5 V, TYP values at 25°C and 3.0 V.

Oscillator Parameters:


SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Xtal General		·	•			
F	Crystal Frequency			32.768		kHz
	Oscillator start-up time at	$T_A = 25^{\circ}C$		0.5	1	-
t _{START}	$V_{DD} = 3.0 V$				3	S
V _{START}	Oscillator start-up voltage		1.2			V
Δf/V	Frequency vs. voltage characteristics	$V_{DD} = 1.5 V \text{ to } 5.5 V$ $T_A = 25^{\circ}\text{C}$		0.5	1	ppm/V
M	V _{DD} rising slew rate	$V_{DD} = 1.0 \text{ V}$ to 3.6 V			5	
V _{DDR}	(Clock maintenance slew rate)	V _{DD} = 3.6 V to 5.5 V			15	V/µs
V _{DDF}	V _{DD} falling slew rate (Clock maintenance slew rate)	$V_{DD} = 5.5 \text{ V to } 1.0 \text{ V}$			2	μ
δ _{CLKOUT}	CLKOUT duty cycle	$V_{DD} = 1.1 \text{ V to } 5.5 \text{ V}$ $F_{CLKOUT} = 32.768 \text{ kHz}$		50 ±10		
Xtal Frequency C	characteristics					
ΔF/F	Frequency accuracy	$T_A = 25^{\circ}C$		±10	±20	ppm
$\Delta F/F_{TOPR}$	Frequency vs. temperature characteristics	$T_{OPR} = -40 \text{ to } +85^{\circ}\text{C}$ $V_{DD} = 3.0 \text{ V}$	-0.035 ^{pp}	ppm		
T ₀	Turnover temperature		+25 ±5			°C
ΔF/F	Aging first year max.	$T_A = 25^{\circ}C, V_{DD} = 3.0 V$			±3	ppm
Digital Temperat	ure Compensated Xtal DTCXO	·	•	•		
	Time accuracy calibrated,			±3		ppm
ΔF/F	OFFSET = 0 (default value on delivery). CLKOUT measured on rising edge of One 1 Hz period	$T_A = -40^{\circ}C$ to $+85^{\circ}C$		±0.26		s/day
ΔF/F	1 Hz OFFSET value: Min. corr. step (LSB) and Max. corr. range	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	±0.2384		+7.391/ -7.629	ppm
ΔF/F	OFFSET. Achievable time accuracy.	Calibrated at an initial temperature and voltage	-0.1192		+0.1192	ppm
ΔΤ	Calibrated Temperature sensor accuracy, TREF = preconfigured (Factory Calibrated)	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	±3			°C
ΔΤ	TREF value: Min. corr. step (LSB)	$T_A = -40^{\circ}C$ to $+85^{\circ}C$		±0.0078125		°C
ΔΤ/V	Temperature sensor value vs. voltage characteristics	$V_{DD} = 1.5 \text{ V} \text{ to } 5.5 \text{ V}$ $T_A = 25^{\circ}\text{C}$		0.1		°C/V

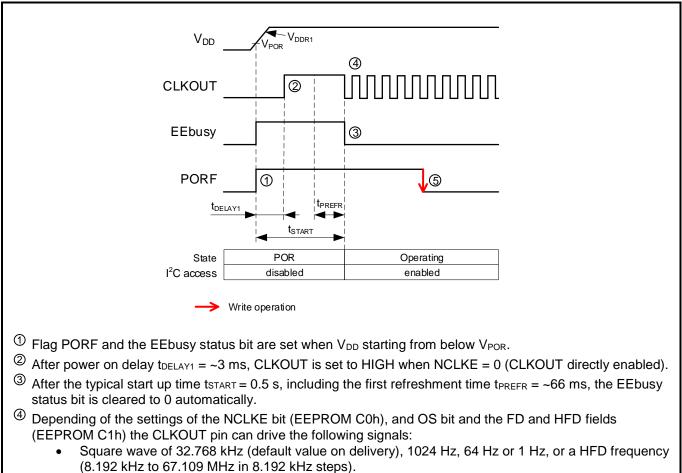
7.3.1.TIME ACCURACY VS. TEMPERATURE CHARACTERISTICS

7.3.2.TIME ACCURACY 1 HZ EXAMPLE


Time accuracy of the temperature compensated 1 Hz signal at CLKOUT pin, $T_A = -40^{\circ}$ C to +85°C: The following curves are with OFFSET = 0 (default value on delivery). Fine adjustment in the vertical direction can be done by determining an OFFSET value (see AGING CORRECTION).

7.3.3.TEMPERATURE SENSOR ACCURACY EXAMPLE

Calibrated Temperature sensor accuracy, $T_A = -40^{\circ}C$ to $+85^{\circ}C$:


The following curves are made with preconfigured (Factory Calibrated) TREF value. Fine adjustment in the vertical direction can be done by determining a new TREF value (see TEMPERATURE REFERENCE ADJUSTMENT. For this diagram, RTC module is in VDD Power state so that the TEMP value can be read with I²C.

7.4. POWER ON AC ELECTRICAL CHARACTERISTICS

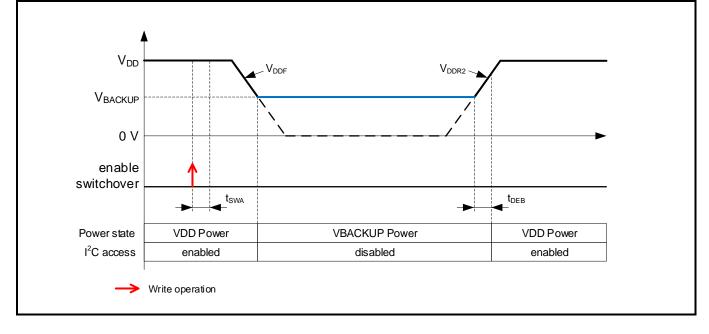
The following Figure describes the power on AC electrical characteristics for the CLKOUT pin. The clock output signal on CLKOUT pin is primarily controlled by the NCLKE bit (EEPROM C0h), and OS bit and the FD and HFD fields (EEPROM C1h). See also PROGRAMMABLE CLOCK OUTPUT and POWER ON RESET INTERRUPT FUNCTION.

Power On AC Electrical Characteristics:

- When NCLKE bit is 1 the CLKOUT signal is set to LOW level.
- ⁽⁵⁾ The PORF flag remains 1 until it is cleared to 0 by software.

For this Table, $T_A = -40$ to $+85^{\circ}$ C and $V_{DD} = 1.2$ to 5.5 V, TYP values at 25°C and 3.0 V.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
V _{DDR1}	V _{DD} rising slew rate at initial power on reset (POR)		10		55	V/ms
t _{DELAY1}	Power on delay	CLKOUT directly enabled (NCLKE = 0)		3	10	ms
	Oscillator start-up time at	$T_A = 25^{\circ}C$		0.5	1	
t _{START}	$V_{DD} = 3.0 V$				3	S
V _{START}	Oscillator start-up voltage		1.2			V
t _{PREFR}	First refreshment time			66		ms

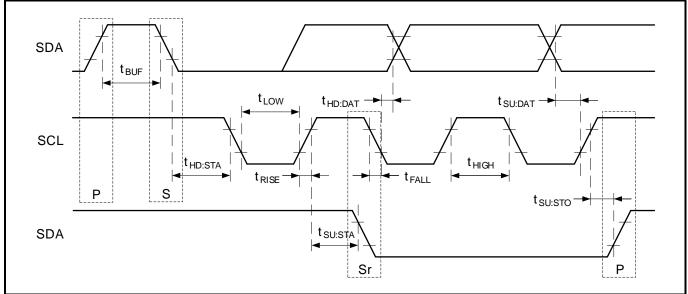

Power On AC Electrical Parameters:

7.5. BACKUP AND RECOVERY AC ELECTRICAL CHARACTERISTICS

As long as no voltage drop of the internal voltage (V_{DD} or V_{BACKUP}) under V_{LOW} (1.2 V) is detected the clocks are operating, the RAM registers are retained and temperature sensing and temperature compensation is working. If the internal voltage falls below V_{LOW} (1.2 V) and is above minimum time keeping voltage (1.0 V) clocks are still operating and the RAM registers are retained, but temperature sensing and temperature compensation is stopped and data may no longer be valid.

- If you want to use the CLKOUT function, select a valid V_{DD} range (1.2 V < V_{DD} ≤ 5.5 V). See also VOLTAGE LOW DIAGRAM.
- 2. Ensure that the slew rates V_{DDF} and V_{DDR2} fulfill their specifications.
- 3. Check if these required specifications are fulfilled on your system.

VDD Backup and recovery AC Electrical Characteristics: Example with Direct Switching Mode.


For this Table, $T_A = -40^{\circ}$ C to $+85^{\circ}$ C unless otherwise indicated.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT		
t _{SWA}	Backup switchover function	Changing from SWITCHOVER DISABLED to DSM			2			
	activation time	Changing from SWITCHOVER DISABLED to LSM			10	ms		
V _{DDF}	V _{DD} falling slew rate				550	V/µs		
V _{DDR2}	V _{DD} rising slew rate	Rising from 1.5 V to V_{DD}			400	V/µs		
	Debounce time from VDD	Internal voltage was always above V_{LOW} (1.2 V). VLF = 0.			1			
t _{DEB}	debounce logic, when switching back from V_{BACKUP} to V_{DD}	Internal voltage was between V_{LOW} (1.2 V) and 1.0 V. VLF = 1. ⁽¹⁾	1000			ms		
	VLF = 1.57							

7.6. I²C-BUS CHARACTERISTICS

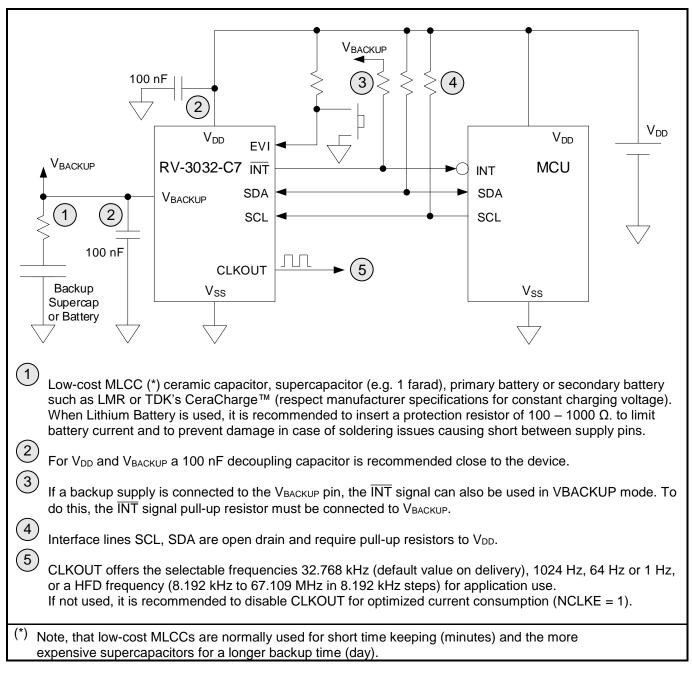
The following Figure and Table describe the I²C AC electrical parameters.

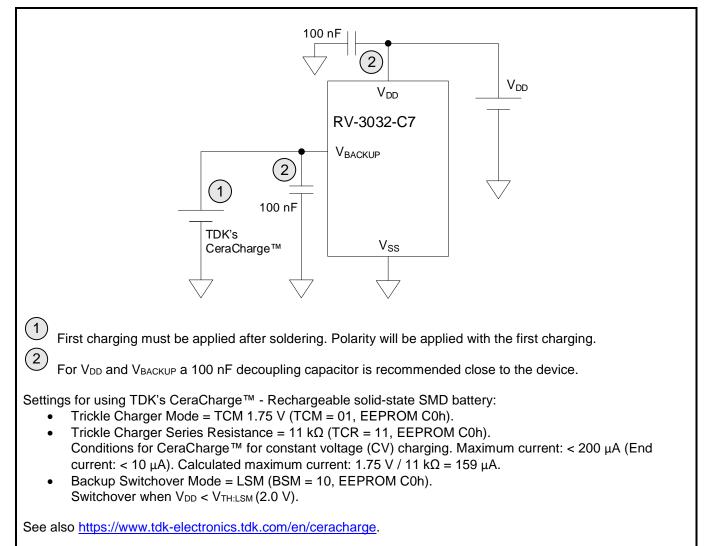
I²C AC Parameter Definitions:

For the following Table, $T_A = -40$ to $+85^{\circ}C$.

I²C AC Electrical Parameters:

SYMBOL	PARAMETER	V _{DD} 2	2 1.4 V	V _{DD} ≥		
	PARAMETER	MIN	MAX	MIN	MAX	UNIT
f _{SCL}	SCL input clock frequency	0	100	0	400	kHz
t _{LOW}	Low period of SCL clock	4.7		1.3		μs
t _{HIGH}	High period of SCL clock	4.0		0.6		μs
t _{RISE}	Rise time of SDA and SCL		1000		300	ns
t _{FALL}	Fall time of SDA and SCL		300		300	ns
t _{HD:STA}	START condition hold time	4.0		0.6		μs
t _{SU:STA}	START condition setup time	4.7		0.6		μs
t _{SU:DAT}	SDA setup time	250		100		ns
t _{HD:DAT}	SDA hold time	0		0		μs
t _{SU:STO}	STOP condition setup time	4.0		0.6		μs
t _{BUF}	Bus free time before a new transmission	4.7		1.3		μs
S = Start con	dition, Sr = Repeated Start condition, P = Stop co	ondition				

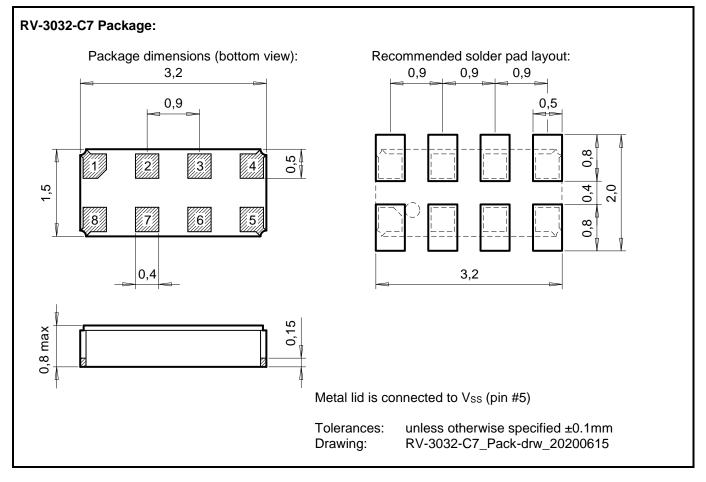

Caution:


When accessing the RV-3032-C7, all communication from transmitting the Start condition to transmitting the Stop condition after access should be completed within 950 ms.

If such communication requires 950 ms or longer, the I²C-bus interface is reset by the internal bus timeout function.

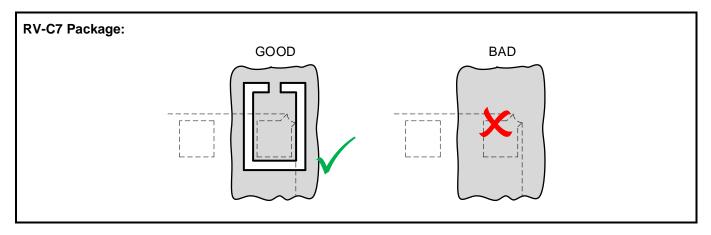
8. TYPICAL APPLICATION CIRCUIT

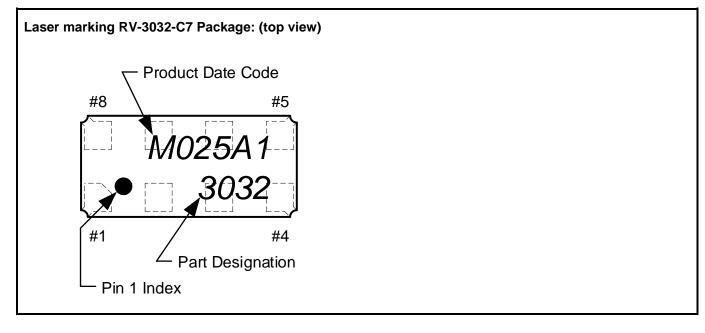
8.1. OPERATING RV-3032-C7 WITH BACKUP SUPPLY VOLTAGE



8.1.1.OPERATING RV-3032-C7 WITH CERACHARGE™ BACKUP BATTERY

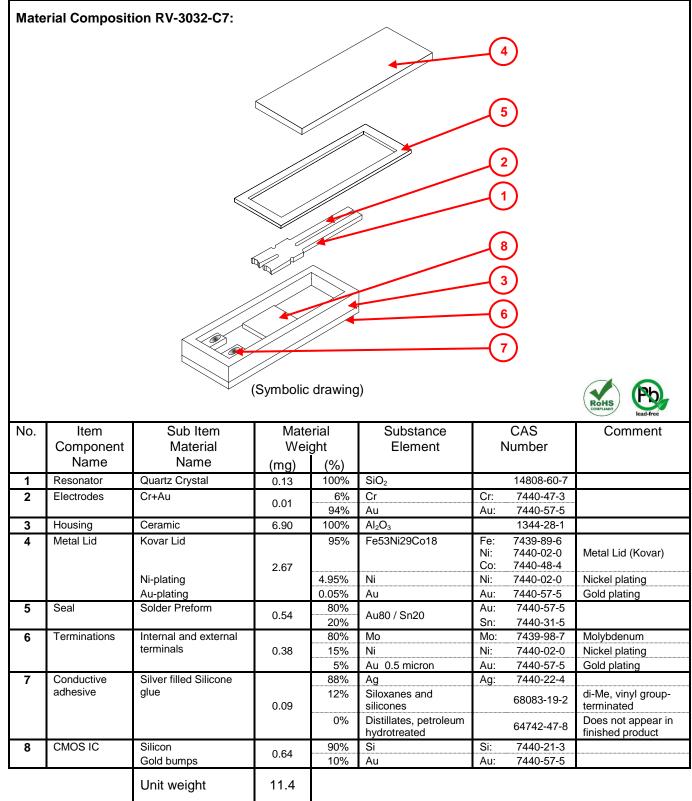
9. PACKAGE


9.1. DIMENSIONS AND SOLDER PAD LAYOUT


All dimensions in mm typical.

9.1.1.RECOMMENDED THERMAL RELIEF

When connecting a pad to a copper plane, thermal relief is recommended.


9.2. MARKING AND PIN #1 INDEX

10.MATERIAL COMPOSITION DECLARATION & ENVIRONMENTAL INFORMATION

10.1. HOMOGENOUS MATERIAL COMPOSITION DECLARATION

Homogenous material information according to IPC-1752 standard

10.2. MATERIAL ANALYSIS & TEST RESULTS

Homogenous material information according to IPC-1752 standard

No.	Item Component	Item Sub Item Component Material Name Name	RoHS					Halogen			Phthalates					
			qd	Cd	Нg	Cr+6	PBB	PBDE	Ц	CI	Br		d88	DBP	DEHP	DINP
1	Resonator	Quartz Crystal	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
2	Electrodes	Cr+Au	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
3	Housing	Ceramic	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
4	Metal Lid	Kovar Lid & Plating	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
5	Seal	Solder Preform	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
6	Terminations	Int. & ext. terminals	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
7	Conductive adhesive	Silver filled Silicone glue	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
8	CMOS IC	Silicon & Gold bumps	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	MDL	Measurement Detection Limit	2 ppm		5 ppm		50 ppm			0.00	0.003%		0.01%			

Test methods: RoHS

RoHSTest method with reference to IEC 62321-5: 2013HalogenTest method with reference to BS EN 14582:2007PhthalatesTest method with reference to EN 14372

MDL: 2 ppm (PBB / PBDE: 5 ppm)

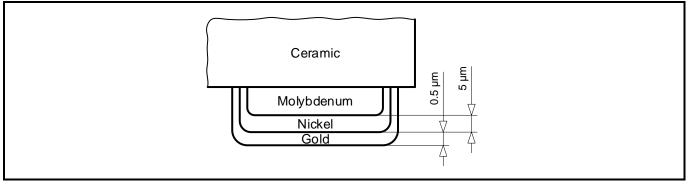
nd

= not detectable

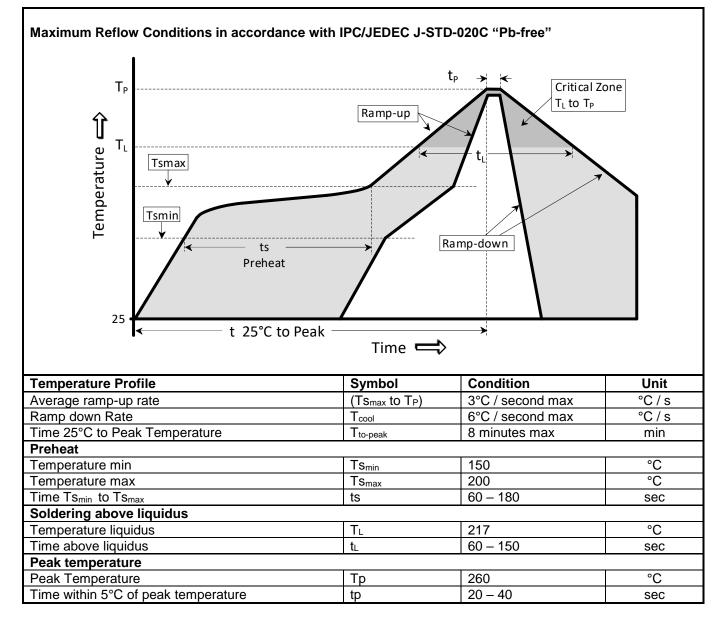
MDL: 50 ppm

MDL: 0.003 % (DINP 0.01%)

10.3. RECYCLING MATERIAL INFORMATION


Recycling material information according to IPC-1752 standard. Element weight is accumulated and referenced to the unit weight of 11.4 mg.

ltem Material	No.	Item Component	Material Weight		Substance Element	CAS Number		Comment
Name		Name	(mg)	(%)				
Quartz Crystal	1	Resonator	0.13	1.14	SiO ₂		14808-60-7	
Chromium	2	Electrodes	0.0006	0.005	Cr	Cr:	7440-47-3	
Ceramic	3	Housing	6.90	60.74	Al ₂ O ₃		1344-28-1	
Gold	2 4 5 6 8	Electrodes Metal Lid Seal Terminations CMOS IC	0.53	4.63	Au	Au:	7440-57-5	
Tin	5	Seal	0.11	0.95	Sn	Sn:	7440-31-5	
Nickel	4 6	Metal Lid Terminations	0.19	1.67	Ni	Ni:	7440-02-0	
Molybdenum	6	Terminations	0.3	2.68	Мо	Mo:	7439-98-7	
Kovar	4	Metal Lid	2.53	22.33	Fe53Ni29Co18	Fe: Ni: Co:	7439-89-6 7440-02-0 7440-48-4	
Silver	7a	Conductive adhesive	0.079	0.7	Ag	Ag:	7440-22-4	
Siloxanes and silicones	7b	Conductive adhesive	0.011	0.10	Siloxanes and silicones		68083-19-2	di-Me, vinyl group- terminated
Distillates	7c	Conductive adhesive	0	0	Distillates		64742-47-8	hydrotreated petroleum, does not appear in finished products
Silicon	8	CMOS IC	0.58	5.07	Si	Si:	7440-21-3	
	Unit v	weight (total)	11.4	100				


10.4. ENVIRONMENTAL PROPERTIES & ABSOLUTE MAXIMUM RATINGS

Package	Description							
SON-8 ceramic package	Small Outline Non-leaded (SON), hermetically sealed ceramic package with metal lid							
Parameter	Directive	Conditions	Value					
Product weight (total)			11.4 mg					
Storage temperature		Store as bare product	-55 to +125°C					
Moisture sensitivity level (MSL)	IPC/JEDEC J-STD-020D		MSL1					
FIT / MTBF			available on request					

Terminal finish:

11.SOLDERING INFORMATION

12. HANDLING PRECAUTIONS FOR MODULES WITH EMBEDDED CRYSTALS

The built-in tuning-fork crystal consists of pure Silicon Dioxide in crystalline form. The cavity inside the package is evacuated and hermetically sealed in order for the crystal blank to function undisturbed from air molecules, humidity and other influences.

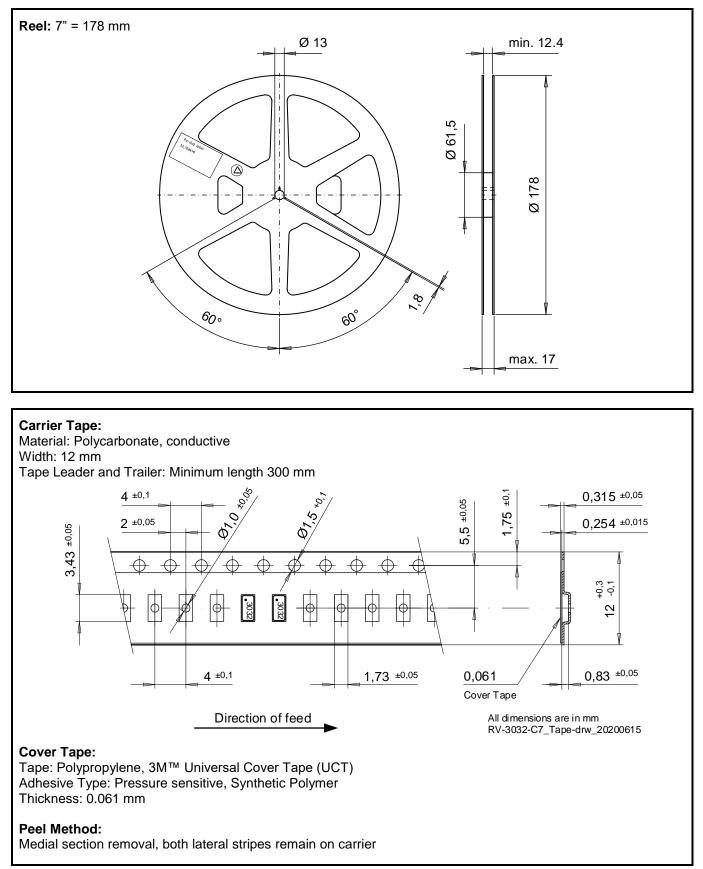
Shock and vibration:

Keep the crystal / module from being exposed to **excessive mechanical shock and vibration**. Micro Crystal guarantees that the crystal / module will bear a mechanical shock of 5000 g / 0.3 ms.

The following special situations may generate either shock or vibration:

Multiple PCB panels - Usually at the end of the pick & place process the single PCBs are cut out with a router. These machines sometimes generate vibrations on the PCB that have a fundamental or harmonic frequency close to 32.768 kHz. This might cause breakage of crystal blanks due to resonance. Router speed should be adjusted to avoid resonant vibration.

Ultrasonic cleaning - Avoid cleaning processes using ultrasonic energy. These processes can damage crystals due to mechanical resonance of the crystal blank.


Overheating, rework high temperature exposure:

Avoid overheating the package. The package is sealed with a seal ring consisting of 80% Gold and 20% Tin. The eutectic melting temperature of this alloy is at 280°C. Heating the seal ring up to >280°C will cause melting of the metal seal which then, due to the vacuum, is sucked into the cavity forming an air duct. This happens when using hot-air-gun set at temperatures >300°C.

Use the following methods for rework:

- Use a hot-air- gun set at 270°C.
- Use 2 temperature controlled soldering irons, set at 270°C, with special-tips to contact all solder-joints from both sides of the package at the same time, remove part with tweezers when pad solder is liquid.

13. PACKING & SHIPPING INFORMATION

14.COMPLIANCE INFORMATION

Micro Crystal confirms that the standard product Real-Time Clock Module RV-3032-C7 is compliant with "EU RoHS Directive" and "EU REACh Directives".

Please find the actual Certificate of Conformance for Environmental Regulations on our website: CoC_Environment_RV-Series.pdf

15. DOCUMENT REVISION HISTORY

Date Revision # Re		Revision Details
June 2020	1.0	First release
August 2020	1.1	Added Operating RV-3032-C7 With CeraCharge™ Backup Battery, 8.1.1.

Information furnished is believed to be accurate and reliable. However, Micro Crystal assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. In accordance with our policy of continuous development and improvement, Micro Crystal reserves the right to modify specifications mentioned in this publication without prior notice. This product is not authorized for use as critical component in life support devices or systems.

Micro Crystal AG Muehlestrasse 14 CH-2540 Grenchen Switzerland Phone +41 32 655 82 82 Fax +41 32 655 82 83 sales@microcrystal.com www.microcrystal.com