
Published on LabJack (http://labjack.com)

Home > T7 Datasheet

T7 Datasheet

High performance multifunction DAQ with USB, Ethernet, and WiFi.

This datasheet covers all T7 variants: T7, T7-OEM, T7-PRO, and T7-PRO-OEM.

Most information in this datasheet applies to all T7 variants. Information about WiFi and the high-resolution ADC (ResolutionIndex = 9-12)
only applies to the -Pro variants. There is an OEM section with information specific to the build of OEM versions.

PDF Datasheet

If you are looking at a PDF or hardcopy, realize that it is likely out-of-date as the original is an online document. Also, this datasheet is
designed as online documentation, so the formatting of a PDF is often less than ideal.

To make a PDF of the whole manual, click "Export all" towards the upper-right of this page. To make a PDF of a particular section go to that
page and click "Export all" towards the upper-right of that page. Doing so converts these pages to a PDF on-the-fly, using the latest content,
and can take 20-30 seconds. Make sure you have a current browser (we mostly test in Firefox and Chrome) and the current version of
Acrobat Reader. If it is not working for you, rather than a normal click of "Export all" do a right-click and select "Save link as" or similar. If
exporting the entire datasheet, it can take 20-30 seconds and then a dialog box will pop up asking you where to save the PDF. Then you can
open it in the real Acrobat Reader, not embedded in a browser. If you still have problems, try the "Print all" option instead.

Rather than using a PDF, though, we encourage you to use this web-based documentation. Some advantages:

We can quickly improve and update content.
Click-able links to further or related details throughout the online document.
The site search includes the datasheet, forum, and all other resources at labjack.com. When you are looking for something try using
the site search.
For support, try going to the applicable datasheet page and post a comment. When appropriate we can then immediately add/change
content on that page to address the question.

Occasionally we export a PDF and attach it to this page (below).

Navigating the Datasheet using the Table of Contents

An efficient way to navigate this online datasheet is to browse the table of contents to the left. Rather than clicking on all the links to browse,
you can click on the small black triangles to expand without reloading the whole page.

Datasheet

Preface: Warranty, Liability, Compliance

For the latest version of this and other documents, go to www.labjack.com.

detailsdetailsdetails

http://labjack.com/print/book/export/html/1173

1 of 81 4/8/2014 1:27 PM

Copyright 2013, LabJack Corporation

Warranty:

The LabJack T7 is covered by a 1 year limited warranty from LabJack Corporation, covering this product and parts against defects in material
or workmanship. The LabJack can be damaged by misconnection (such as connecting 120 VAC to any of the screw terminals), and this
warranty does not cover damage obviously caused by the customer. If you have a problem, contact support@labjack.com for return
authorization. In the case of warranty repairs, the customer is responsible for shipping to LabJack Corporation, and LabJack Corporation will
pay for the return shipping.

Limitation of Liability:

LabJack designs and manufactures measurement and automation peripherals that enable the connection of a PC to the real-world. Although
LabJacks have various redundant protection mechanisms, it is possible, in the case of improper and/or unreasonable use, to damage the
LabJack and even the PC to which it is connected. LabJack Corporation will not be liable for any such damage.

Except as specified herein, LabJack Corporation makes no warranties, express or implied, including but not limited to any implied warranty or
merchantability or fitness for a particular purpose. LabJack Corporation shall not be liable for any special, indirect, incidental or consequential
damages or losses, including loss of data, arising from any cause or theory.

LabJacks and associated products are not designed to be a critical component in life support or systems where malfunction can reasonably
be expected to result in personal injury. Customers using these products in such applications do so at their own risk and agree to fully
indemnify LabJack Corporation for any damages resulting from such applications.

LabJack assumes no liability for applications assistance or customer product design. Customers are responsible for their applications using
LabJack products. To minimize the risks associated with customer applications, customers should provide adequate design and operating
safeguards.

Reproduction of products or written or electronic information from LabJack Corporation is prohibited without permission. Reproduction of any
of these with alteration is an unfair and deceptive business practice.

Conformity Information (FCC, CE, RoHS):

See the Conformity Page and the text below:

FCC PART 15 STATEMENTS:

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide

reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio

frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment

in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense. The end user of this product

should be aware that any changes or modifications made to this equipment without the approval of the manufacturer could result in the product not meeting the Class A limits, in

which case the FCC could void the user's authority to operate the equipment.

Declaration of Conformity:

Manufacturers Name: LabJack Corporation

Manufacturers Address: 3232 S Vance St STE 100, Lakewood, CO 80227, USA

Declares that the product

Product Name: LabJack T7 (-Pro)

Model Number: LJT7 (-Pro)

conforms to the following Product Specifications:

EMC Directive: 2004/104/EEC

EN 55011 Class A

EN 61326-1: General Requirements

and is marked with CE

RoHS:

The T7 (-Pro) is RoHS compliant per the requirements of Directive 2002/95/EC.

Preface

1.0 Device Overview

This document contains device-specific information for the following devices:

http://labjack.com/print/book/export/html/1173

2 of 81 4/8/2014 1:27 PM

T7
T7-Pro
T7-OEM
T7-Pro-OEM

This family introduces a new line of high-quality analog and Ethernet data acquisition hardware, with the main traditional advantage of all
LabJack data acquisition hardware, namely, high performance and rich feature set at a competitive price point. These features make the T
series a logical choice for many high-performance applications, where Ethernet, WiFi, and cost are primary considerations.

1.1 Core Features

Analog I/O

14 Analog Inputs (16-18+ Bits Depending on Speed)
Single-Ended Inputs (14) or Differential Inputs (7)
Instrumentation Amplifier Inputs
Software Programmable Gains of x1, x10, x100, and x1000
Analog Input Ranges of ±10, ±1, ±0.1, and ±0.01 Volts
2 Analog Outputs (12-Bit, ~0-5 Volts)

Digital I/O

23 Digital I/O
Supports SPI, I2C, and Asynchronous Serial Protocols (Master Only)
Supports Software or Hardware Timed Acquisition
Maximum Input Stream Rate of 100 kHz (Depending on Resolution)
Capable of Command/Response Times Less Than 1 Millisecond

Digital I/O Extended Features

Simple PWM Output (1-32 bit)
PWM Output w/ phase control
Pulse Output w/ phase control
Positive edge capture
Negative edge capture
PWM measure
Edge capture & compare
High speed counter (TBD ~40 MHz)
Software counter (TBD ~200 kHz)
Software counter w/ debounce
Quadrature Input

Other highlights

Built-In CJC Temperature Sensor
Watchdog system
Field Upgradable Firmware
Programmable Startup Defaults
LJTick Compatible

Fixed Current Outputs

200 µA
10 µA

1.2 Family Variants Info

T7 vs T7-Pro

The T7-Pro has all features of the normal T7, with the following added:

Wireless Ethernet 802.11b/g
24-bit Low-Speed ADC for 22-Bit Effective Resolution

Also see the block diagram in the hardware overview section.

http://labjack.com/print/book/export/html/1173

3 of 81 4/8/2014 1:27 PM

T7-OEM and T7-Pro-OEM

There is also an OEM version of the T7 and T7-Pro. The OEM versions are the same in terms of features, but the enclosure, and most
connectors are not installed on the OEM versions, which allows customers to easily configure as needed. See Appendix A - OEM Versions
for details.

2.0 Installation

First install LabJack software and driver bundle based on your operating system.1.

T7/Digit Devices

Windows Installer 49.87 MB 2014-02-27 15:24

Mac OS X Package 2.73 MB 2014-01-22 19:29

Linux 32-bit

Package 1.2 MB 2014-01-22 17:17

Linux 64-bit

Package 1.19 MB 2014-01-22 19:32

Connect the T7 to the local computer via USB.2.
Proceed through any steps to add new hardware.3.
If using Windows, open Kipling (installed with package above). Utility apps for other operating systems are still under development.4.
Use the dashboard in Kipling to view analog inputs, digital I/O, DAC outputs, etc.5.
Go to quickstart page to see more about Kipling and its use with the T7.6.

3.0 Communication

Modbus TCP is the protocol used by all connections on the T7(USB, Ethernet, WiFi). All important values and data from the device can be
read and/or written by using the associated Modbus register(s). Thus, the process for reading the serial number, an analog input, or a
waveform is all functionally the same, you simply provide a different address. There are two main ways to communicate with a T7 using
Modbus TCP.

Communication Options

High-level LJM library

Among other useful features, this cross-platform library allows users to access registers by name, such as "AIN4" for analog input 4. Most
people will use the LJM library since they're familiar with writing code, and want to integrate a T7 into an existing software framework.

Conceptual workflow:

Find example code/wrappers for your desired programming language.1.
Use the LJM_Open() function to open a connection to the T7.2.
Perform reads and writes to Modbus registers using LJM_eReadName() or LJM_eWriteName().3.
Use the Close() function to close the connection.4.

Direct Modbus TCP, Clients

It is easy to integrate a T7 over Ethernet or Wi-Fi into standard COTS Modbus software platforms, since the T7 is directly compatible. People
who already use Modbus software will find this option convenient. Some COTS Modbus software is very powerful, and will save users the
time and money required to develop their own software.

Conceptual workflow:

Configure the power-up-default registers on the T7 using the Kipling software program. Change Ethernet/WiFi IP settings, any relevant
analog input settings, etc. '..._DEFAULT' registers indicate that they are power-up-defaults.

1.

Open COTS Modbus program.2.
Specify the Modbus registers by address, such as 8, for AIN4. Find applicable registers with the register look-up tool, or by referencing
the datasheet etc.

3.

See data directly from the T7 in COTS software.4.

http://labjack.com/print/book/export/html/1173

4 of 81 4/8/2014 1:27 PM

Communication Speed Considerations

There are two alternate methods for data transfer to occur, command response is the lowest latency, and streaming offers the highest data
throughput, the following sections provide more detail.

Command-Response

This is the default behavior for communication with a device, and most people find the data throughput satisfactory. Direct Modbus
interactions will always use command-response. The high-level LJM library also uses command-response.

Communication is initiated by a command from the host which is followed by a response from the device. In other words, data transfer is
software-paced. Command-response is generally used at 1000 scans/second or slower and is generally simpler than stream mode.

Command-response mode is generally best for minimum-latency applications such as feedback control. By latency here we mean the time
from when a reading is acquired to when it is available in the host software. A reading or group of readings can be acquired in times on the
order of a millisecond. See Appendix A-1 for details on c-r data rates.

Stream Mode

Stream mode is generally best for maximum-throughput applications. However, streaming is not recommended for feedback control
operations, due to the latency in data recovery. Data is acquired very fast, but to sustain the fast rates it must be buffered and moved from
the device to the host in large chunks. Streaming is only available through the high-level LJM library, and is not possible using direct Modbus
communication.

Stream mode is a continuous hardware-paced input mode where a list of addresses is scanned at a specified scan rate. The scan rate
specifies the interval between the beginning of each scan. The samples within each scan are acquired as fast as possible. As samples are
collected automatically by the device, they are placed in a buffer on the device, until retrieved by the host. Stream mode is generally used
when command-response is not fast enough. Stream mode is not supported on the hi-res converter (resolutions 9-12 not supported in
stream).

For example, a typical stream application might set up the device to acquire a single analog input at 100,000 samples/second. The device
moves this data to the host in chunks of 25 samples each. The LJM library moves data from the USB host memory to the software memory
in chunks of 2000 samples. The user application might read data from memory once a second in a chunk of 100,000 samples. The
computer has no problem retrieving, processing, and storing, 100k samples once per second, but it could not do that with a single sample
100k times per second. See Appendix-A-1 for details on stream mode data rates.

Command-response can be done while streaming, but streaming needs exclusive control of the analog input system so analog inputs
(including the internal temperature sensor) cannot be read via command-response while a stream is running.

3.1 Modbus Map

This utility is used to find Modbus registers that pertain to the T7, simply select the T7 from the device filter, and then narrow down results
using either the search tool, or the tag filters. All of these registers use command-response, unless specified as STREAM.

http://labjack.com/support/modbus/map

We distribute a constants file called "ljm_constants.json" that defines all information about the Modbus register map. The dynamic filter &
search tool below pulls it's data from that JSON file.

Name: A string name that can be used with the LJM library to access each register.
Address: The starting address of each register.
Details: Click to get text pulled from the description field in the JSON.
Type: Specifies the datatype, which also tells you how many registers each value uses.
Access: Read-only, write-only, or read & write.
Tags: Used to associate registers with particular functionality. Useful for filtering.

For a U3/U6 with firmware less than 2.0, or for the UE9, see the deprecated Modbus system called UD Modbus.

http://labjack.com/print/book/export/html/1173

5 of 81 4/8/2014 1:27 PM

Device:

Tags:
DAC

Expand addresses:

Show entries Search:

Showing 1 to 10 of 342 entries

AIN#(0:254) 0 FLOAT32 R AIN, CORE

DAC#(0:1) 1000 FLOAT32 R / W DAC, CORE

CURRENT_SOURCE_10UA_CAL_VALUE 1900 FLOAT32 R CONFIG

CURRENT_SOURCE_200UA_CAL_VALUE 1902 FLOAT32 R CONFIG

FIO#(0:7) 2000 UINT16 R / W DIO, CORE

DIO#(0:7) 2000 UINT16 R / W DIO, CORE

EIO#(0:7) 2008 UINT16 R / W DIO, CORE

DIO#(8:15) 2008 UINT16 R / W DIO, CORE

CIO#(0:3) 2016 UINT16 R / W DIO, CORE

DIO#(16:19) 2016 UINT16 R / W DIO, CORE

name address type access tags details

3.2 Stream Mode

Streaming is for applications where data throughput above 1000 scans/seconds is required. Command-response is generally used for
1000Hz and slower because it is simpler than stream mode. Functions use command-response unless the function name directly mentions
stream, or streaming. The following list of registers is used to perform streaming with the T7.

Stream Configuration

Name Start Address Type Access Default

STREAM_SCANRATE_HZ 4002 FLOAT32 R/W 0

STREAM_NUM_ADDRESSES 4004 UINT32 R/W 0

STREAM_SAMPLES_PER_PACKET 4006 UINT32 R/W 0

STREAM_SETTLING_US 4008 FLOAT32 R/W 0

STREAM_RESOLUTION_INDEX 4010 UINT32 R/W 0

STREAM_BUFFER_SIZE_BYTES 4012 UINT32 R/W 0

STREAM_AUTO_TARGET 4016 UINT32 R/W 0

STREAM_NUM_SCANS 4020 UINT32 R/W 0

STREAM_ENABLE 4990 UINT32 W

STREAM_SCANLIST_ADDRESS#(0:127) 4100 UINT32 R/W 0

STREAM_SCANRATE_HZ

The number of times per second that all channels in the scanlist will be read.

STREAM_NUM_ADDRESSES

The number of entries in the scanlist

STREAM_SAMPLES_PER_PACKET

Specifies the number of data points to be sent in the data packet.

STREAM_SETTLING_US

Time in microseconds to allow signals to settle after switching the mux. Default 10 us.

STREAM_RESOLUTION_INDEX

Index specifying the resolution of the data. High settings will have lower max speeds.

STREAM_BUFFER_SIZE_BYTES

Size of the stream data buffer in bytes. Must be a power of 2. 0 is updated to the default size upon stream starting. Changes while stream is running do not affect
the currently running stream.

2 3 4 5 Next Last

http://labjack.com/print/book/export/html/1173

6 of 81 4/8/2014 1:27 PM

STREAM_AUTO_TARGET

Controls where data will be sent.

STREAM_NUM_SCANS

The number of scans to run before automatically stopping.

STREAM_ENABLE

Write 1 to start stream. Write 0 to stop stream.

STREAM_SCANLIST_ADDRESS#(0:127)

A list of addresses to read each scan.

Names Addresses

STREAM_SCANLIST_ADDRESS0,

STREAM_SCANLIST_ADDRESS1,

STREAM_SCANLIST_ADDRESS2, Show All

4100, 4102, 4104, Show All

$(document).ready(function() { $('.collapsed-content-expander').closest('.content').find('.sometimes-shown').hide(); $('.collapsed-content-
expander').click(function(e) { $(e.target).closest('.content').find('.collapsed-content-expander').fadeOut(function () {
$(e.target).closest('.content').find('.sometimes-shown').fadeIn(); }); return false; }); });

Stream-Out (Advanced)

Usage

Along with the standard stream mode (stream-in), the T7 also has the ability to output a data stream. Users create an array of values to
output to an output capable I/O, such as DAC or Digital I/O, and the T7 will output the values at up to 100kHz. Digital waveform generation is
typically handled by the extended features of the Digitital I/O system, but it's possible to create a very unique waveform using stream-out.
Stream-out is best suited to create fast (>1000Hz) analog output signals on the DAC output lines.

Summary

Stream-out is a ring buffer from which data is read and sent to a target. Upon reaching the end of the supplied data, stream-out has three
loop triggers.

End of data loop triggers (set by STREAM_OUT#(0:3)_SET_LOOP):

1: Use new data set and loop size
2: Wait for synch
3: Synch

(A more detailed descriptions of these data loop triggers is yet to come.)

The T7 firmware handles up to four stream-out data streams, each of which has its own buffer and target. Target refers to the physical I/O
line that will be updated with the values in the data stream. A stream-out channel updates its target when the channel is called in the scan
list, so the order of outputs and inputs during a scan is completely controllable. In other words, it's possible to mix stream-in and stream-out
channels.

Note that the register list below only shows those registers specifically related to the stream-out subsystem. For a complete list of registers
required for operation, combine this list with those in the Stream Mode section.

Stream-Out Registers

Name Start Address Type Access Default

STREAM_OUT#(0:3)_TARGET 4040 UINT32 R/W 0

STREAM_OUT#(0:3)_BUFFER_SIZE 4050 UINT32 R/W 0

STREAM_OUT#(0:3)_LOOP_SIZE 4060 UINT32 R/W 0

STREAM_OUT#(0:3)_SET_LOOP 4070 UINT32 W 0

STREAM_OUT#(0:3)_BUFFER_STATUS 4080 UINT32 R 0

STREAM_OUT#(0:3)_ENABLE 4090 UINT32 R/W 0

STREAM_OUT#(0:3)_BUFFER_F32 4400 FLOAT32 W 0

STREAM_OUT#(0:3)_BUFFER_U32 4410 UINT32 W 0

STREAM_OUT#(0:3)_BUFFER_U16 4420 UINT16 W 0

STREAM_OUT#(0:3)_TARGET

Channel that data will be written to.

Names Addresses

STREAM_OUT0_TARGET, STREAM_OUT1_TARGET,

STREAM_OUT2_TARGET, Show All

4040, 4042, 4044, Show All

STREAM_OUT#(0:3)_BUFFER_SIZE

http://labjack.com/print/book/export/html/1173

7 of 81 4/8/2014 1:27 PM

Size of the buffer in bytes. Should be at least twice the size of updates that will be written.

Names Addresses

STREAM_OUT0_BUFFER_SIZE,

STREAM_OUT1_BUFFER_SIZE,

STREAM_OUT2_BUFFER_SIZE, Show All

4050, 4052, 4054, Show All

STREAM_OUT#(0:3)_LOOP_SIZE

The number of value that will be repeated after reaching the end of supplied data.

Names Addresses

STREAM_OUT0_LOOP_SIZE,

STREAM_OUT1_LOOP_SIZE,

STREAM_OUT2_LOOP_SIZE, Show All

4060, 4062, 4064, Show All

STREAM_OUT#(0:3)_SET_LOOP

Controls when new data and loop size are used.

Names Addresses

STREAM_OUT0_SET_LOOP,

STREAM_OUT1_SET_LOOP,

STREAM_OUT2_SET_LOOP, Show All

4070, 4072, 4074, Show All

STREAM_OUT#(0:3)_BUFFER_STATUS

The number of entries in the buffer that are not currently being used.

Names Addresses

STREAM_OUT0_BUFFER_STATUS,

STREAM_OUT1_BUFFER_STATUS,

STREAM_OUT2_BUFFER_STATUS, Show All

4080, 4082, 4084, Show All

STREAM_OUT#(0:3)_ENABLE

Write 1 to enable, 0 to disable.

Names Addresses

STREAM_OUT0_ENABLE, STREAM_OUT1_ENABLE,

STREAM_OUT2_ENABLE, Show All

4090, 4092, 4094, Show All

STREAM_OUT#(0:3)_BUFFER_F32

Data destination when sending floating point data.

Names Addresses

STREAM_OUT0_BUFFER_F32,

STREAM_OUT1_BUFFER_F32,

STREAM_OUT2_BUFFER_F32, Show All

4400, 4402, 4404, Show All

STREAM_OUT#(0:3)_BUFFER_U32

Data destination when sending 32-bit integer data.

Names Addresses

STREAM_OUT0_BUFFER_U32,

STREAM_OUT1_BUFFER_U32,

STREAM_OUT2_BUFFER_U32, Show All

4410, 4412, 4414, Show All

STREAM_OUT#(0:3)_BUFFER_U16

Data destination when sending 16-bit integer data.

Names Addresses

STREAM_OUT0_BUFFER_U16,

STREAM_OUT1_BUFFER_U16,

STREAM_OUT2_BUFFER_U16, Show All

4420, 4421, 4422, Show All

$(document).ready(function() { $('.collapsed-content-expander').closest('.content').find('.sometimes-shown').hide(); $('.collapsed-content-
expander').click(function(e) { $(e.target).closest('.content').find('.collapsed-content-expander').fadeOut(function () {
$(e.target).closest('.content').find('.sometimes-shown').fadeIn(); }); return false; }); });

4.0 Hardware Overview

http://labjack.com/print/book/export/html/1173

8 of 81 4/8/2014 1:27 PM

The T7 has 3 different I/O areas:

Communication Edge
Screw Terminal Edge
DB Edge

The communication edge has a USB type B connector, an RJ45 Ethernet connector, and in the case of the T7-Pro also has a SMA-RP
Female Connector and a WiFi antenna. Power is always provided through the USB connector, even if USB communication is not used.

The screw terminal edge has convenient connections for 4 analog inputs, both analog outputs, 4 digital I/O, and both current sources. The
screw terminals are arranged in blocks of 4, with each block consisting of VS, GND, and two I/O. Also on this edge are two LEDs. The Comm
LED generally blinks with communication traffic, while the Status LED is used for other indications.

The DB Edge has 2 D-sub type connectors: a DB15 and DB37. The DB15 has 12 additional digital I/O. The DB37 has the same I/O as the
screw-terminals, plus additional analog inputs and digital I/O, for a total of 14 analog inputs, 2 analog outputs, 2 fixed current sources, and 11
digital I/O.

http://labjack.com/print/book/export/html/1173

9 of 81 4/8/2014 1:27 PM

Digital waveforms can be output/input on various digital I/O lines, using extended features.

General Device Information

Name Start Address Type Access Default

PRODUCT_ID 60000 FLOAT32 R

HARDWARE_VERSION 60002 FLOAT32 R

FIRMWARE_VERSION 60004 FLOAT32 R

BOOTLOADER_VERSION 60006 FLOAT32 R

WIFI_VERSION 60008 FLOAT32 R

HARDWARE_INSTALLED 60010 UINT32 R 0

ETHERNET_MAC 60020 UINT64 R

WIFI_MAC 60024 UINT64 R

SERIAL_NUMBER 60028 UINT32 R

DEVICE_NAME_DEFAULT 60500 STRING R/W

PRODUCT_ID

The numeric identifier of the device. Such as 3 for a U3-HV.

HARDWARE_VERSION

The hardware version of the device.

FIRMWARE_VERSION

The current firmware version installed on the main processor.

BOOTLOADER_VERSION

The bootloader version installed on the main processor.

WIFI_VERSION

The current firmware version of the WiFi module, if available.

HARDWARE_INSTALLED

Bitmask indicating installed hardware options. 0 = High-Res ADC, 1 = WiFi.

ETHERNET_MAC

The MAC address of the wired Ethernet module.

WIFI_MAC

The MAC address of the WiFi module.

SERIAL_NUMBER

The serial number of the device.

DEVICE_NAME_DEFAULT

The current device name. Up to 49 characters, cannot contain periods.

http://labjack.com/print/book/export/html/1173

10 of 81 4/8/2014 1:27 PM

There are several other useful device control registers listed below. These registers have device-wide impact.

Miscellaneous Device Registers

Name Start Address Type Access Default

CORE_TIMER 61520 UINT32 R

SYSTEM_REBOOT 61998 UINT32 W

WAIT_US_BLOCKING 61590 UINT32 R/W

CORE_TIMER

Internal 32-bit system timer running at 1/2 core speed, thus normally 80M/2 => 40 MHz.

SYSTEM_REBOOT

Issues a device reboot. Must write 0x4C4Axxxx, where xxxx is number of 50ms ticks to wait before reboot.

WAIT_US_BLOCKING

Delays for x microseconds. Range is 0-100000.

5.0 USB

Communication Protocol: Modbus TCP

Connector Type: USB-B Receptacle

Compatible: USB 1.1+

Max Cable Length: 5 meters

Max Packet Size: 64 bytes/packet

Power is supplied to the T7 through the 5V USB connection. If the Ethernet or Wi-Fi connection is preferred for
communication, use the provided AC USB 5V adapter for power. When used for communication, it is a
full-speed USB connection compatible with USB version 1.1 or higher.

Interface - Talk to the T7

Modbus TCP is the protocol used by all connections on the T7 (USB, Ethernet, WiFi). If you want to handle USB communication yourself
(find/open/write/read/close), you can use the Modbus protocol. Most customers, however, will use our LJM library which provides convenient
device discovery, high-level functions, and programming flexibility.

Power Considerations

USB ground is connected to the T7 ground (GND), and USB ground is generally the same as the ground of the PC
chassis and AC mains, since standard USB is non-isolated.

It is possible to isolate USB, and thereby protect the T7 from a power surge coming through the computer, if you
use a USB isolator. USB isolators typically go for $40 to $100 USD, depending on the capabilities.

The T7-Pro will generally require a powered USB hub when in operating at full-power, since some USB ports/hubs
will not supply the current necessary (500mA). Our experience with cheap USB supplies has shown them to be
unreliable above 200mA. We recommend a powered USB hub rated for battery charging applications, since these are typically rated for 1-2A.
See electrical specifications for details on USB current requirements.

If designing your own driver...

The LabJack vendor ID is 0x0CD5. The product ID for the T7 is 0x0007.

The USB interface consists of the normal bidirectional control endpoint (0 OUT & IN), 3 used bulk endpoints (1 OUT, 2 IN, 3 IN), and 1
dummy endpoint (3 OUT). Endpoint 1 consists of a 64 byte OUT endpoint (address = 0x01). Endpoint 2 consists of a 64 byte IN endpoint
(address = 0x82). Endpoint 3 consists of a dummy OUT endpoint (address = 0x03) and a 64 byte IN endpoint (address = 0x83). Endpoint 3
OUT is not supported by the firmware, and should never be used.

All commands should always be sent on Endpoint 1, and the responses to commands will always be on Endpoint 2. Endpoint 3 is only used
to send stream data from the T7 to the host.

6.0 Ethernet

Communication Protocol: Modbus TCP

http://labjack.com/print/book/export/html/1173

11 of 81 4/8/2014 1:27 PM

Connector Type: RJ-45 Socket, Cat 5

Compatible: 10/100Base-T

POE Compatible: No
[1]

Max Cable Length: 100 meters typical

Max Packet Size: 1040 bytes/packet (TCP), 64 bytes/packet (UDP)

Overview

The T7 has a 10/100Base-T Ethernet connection. This connection only provides communication, so power must be provided through the
USB connector. Refer to this WiFi and Ethernet tutorial to get started.

Config (_DEFAULT) Registers versus Status Registers

The first list below is the config registers. These are generally written to configure default Ethernet settings, but can also be read. Configure
the Ethernet parameters in Kipling software.

Any register with _DEFAULT at the end is non-volatile. Whatever value you write to a _DEFAULT register will be retained through a reboot or
power-cycle.

The second list below consists of read-only registers to read the status of Ethernet.

For example, if you write ETHERNET_IP_DEFAULT="192.168.1.207" (you actually write/read the 32-bit numeric equivalent not an IP string),
then that value will be retained through reboots and is the default IP address. If DHCP is disabled, this will be the static IP of the device and
what you get if you read ETHERNET_IP. If DHCP is enabled, then a read of ETHERNET_IP will return the IP set by the DHCP server.

Ethernet Config Registers

Name Start Address Type Access Default

ETHERNET_IP_DEFAULT 49150 UINT32 R/W

ETHERNET_SUBNET_DEFAULT 49152 UINT32 R/W

ETHERNET_GATEWAY_DEFAULT 49154 UINT32 R/W

ETHERNET_DNS_DEFAULT 49156 UINT32 R/W

ETHERNET_ALTDNS_DEFAULT 49158 UINT32 R/W

ETHERNET_DHCP_ENABLE_DEFAULT 49160 UINT16 R/W

ETHERNET_IP_DEFAULT

The IP address of wired Ethernet after a power-cycle to the device.

ETHERNET_SUBNET_DEFAULT

The subnet of wired Ethernet after a power-cycle to the device.

ETHERNET_GATEWAY_DEFAULT

The gateway of wired Ethernet after a power-cycle to the device.

ETHERNET_DNS_DEFAULT

The DNS of wired Ethernet after a power-cycle to the device.

ETHERNET_ALTDNS_DEFAULT

The Alt DNS of wired Ethernet after a power-cycle to the device.

ETHERNET_DHCP_ENABLE_DEFAULT

The Enabled/Disabled state of Ethernet DHCP after a power-cycle to the device.

Ethernet Status Registers

Name Start Address Type Access Default

ETHERNET_IP 49100 UINT32 R

ETHERNET_SUBNET 49102 UINT32 R

ETHERNET_GATEWAY 49104 UINT32 R

ETHERNET_DNS 49106 UINT32 R

ETHERNET_ALTDNS 49108 UINT32 R

ETHERNET_DHCP_ENABLE 49110 UINT16 R

ETHERNET_IP

http://labjack.com/print/book/export/html/1173

12 of 81 4/8/2014 1:27 PM

Read the current IP address of wired Ethernet.

ETHERNET_SUBNET

Read the current subnet of wired Ethernet.

ETHERNET_GATEWAY

Read the current gateway of wired Ethernet.

ETHERNET_DNS

Read the current DNS of wired Ethernet.

ETHERNET_ALTDNS

Read the current Alt DNS of wired Ethernet.

ETHERNET_DHCP_ENABLE

Read the current Enabled/Disabled state of Ethernet DHCP.

Some Examples

Read IP Example: To read the wired IP Address of a device, perform a modbus read of address 49100. The value will be returned as an
unsigned 32-bit number, such as 3232235691. Change this number to an IP address by converting each binary group to an octet, and
adding decimal points as necessary. The result in this case would be "192.168.0.171".

Change IP Example: To change the Ethernet IP Address of a device, perform a modbus write to address 49150. The value must be passed
as an unsigned 32-bit number, such as 3232235691. Change this IP address "192.168.0.171" by converting each octet to a binary group,
and sticking them together.

More Details

Once default Ethernet configuration register(s) are changed, the current settings will be updated on the next power cycle. Alternatively,
toggle power to the Ethernet module by writing a 0, then a 1 to the POWER_ETHERNET address.

Ethernet Power Settings

Name Start Address Type Access Default

POWER_ETHERNET 48003 UINT16 R/W

POWER_ETHERNET_DEFAULT 48053 UINT16 R/W

POWER_ETHERNET

The current ON/OFF state of the Ethernet module. Provided to optionally reduce power consumption.

POWER_ETHERNET_DEFAULT

The ON/OFF state of the Ethernet module after a power-cycle to the device.

[1] The T7 cannot be directly powered via POE cable. However, it is relatively easy to find a POE splitter that converts 48V on POE to the 5V
necessary for the T7. Such adapters run from ~$30 to ~$50 USD. Used in combination, the following parts work to split POE:

TP-LINK TL-POE10R - To split 48V from the Ethernet cable into a 5.5mm OD, 2.1mm ID center positive barrel receptacle.
Tensility International Corp 10-00240 - To convert 5.5mm OD, 2.1mm ID center positive barrel connector to USB-A male plug.
Tensility International Corp 10-00648 - A Female to B Male USB cable. This will fit on the USB-A male plug (Tensility 10-00240), and
insert into the T7.

7.0 WiFi

Communication Protocol: Modbus TCP

Connector Type: Female RP-SMA

Compatible: 802.11 b/g

http://labjack.com/print/book/export/html/1173

13 of 81 4/8/2014 1:27 PM

Range: With stock antenna ... similar to laptops and other WiFi devices

Max Packet Size: 500 bytes/packet

Overview

The T7-Pro has a wireless module. Refer to this WiFi and Ethernet tutorial to get started.

DHCP is enabled from the factory, so to get WiFi going from the factory write the desired SSID string (case sensitive) to
WIFI_SSID_DEFAULT and the proper password string (case sensitive) to WIFI_PASSWORD_DEFAULT. Then write a 1 to
WIFI_APPLY_SETTINGS and watch the status codes. If you get back code 2900 the WiFi chip is associated to your network, and you can
then read the assigned IP from WIFI_IP. Find more details and troubleshooting tips in the WiFi and Ethernet tutorial.

Use the T7-Pro in the same way you would use a standard T7 over Ethernet, but with the WiFi IP address.

Config (_DEFAULT) Registers versus Status Registers

The first list below is the config registers. These are generally written to configure default WiFi settings, but can also be read (except
password). Configure the WiFi parameters in Kipling software.

Any register with _DEFAULT at the end is non-volatile. Whatever value you write to a _DEFAULT register will be retained through a reboot or
power-cycle. WiFi is unique compared to other systems on the T7, in that new values written to _DEFAULT registers are not actually saved
until a 1 is written to WIFI_APPLY_SETTINGS.

The second list below consists of read-only registers to read the status of WiFi.

For example, if you write WIFI_IP_DEFAULT="192.168.1.208" (you actually write/read the 32-bit numeric equivalent not an IP string), then
that value will be retained through reboots and is the default IP address. If DHCP is disabled, this will be the static IP of the device and what
you get if you read WIFI_IP. If DHCP is enabled, then a read of WIFI_IP will return the IP set by the DHCP server.

WiFi Config Registers

Name Start Address Type Access Default

WIFI_IP_DEFAULT 49250 UINT32 R/W

WIFI_SUBNET_DEFAULT 49252 UINT32 R/W

WIFI_GATEWAY_DEFAULT 49254 UINT32 R/W

WIFI_DHCP_ENABLE_DEFAULT 49260 UINT16 R/W

WIFI_SSID_DEFAULT 49325 STRING R/W

WIFI_PASSWORD_DEFAULT 49350 STRING W

WIFI_APPLY_SETTINGS 49400 UINT32 W

WIFI_IP_DEFAULT

The new IP address of WiFi. Use WIFI_APPLY_SETTINGS.

WIFI_SUBNET_DEFAULT

The new subnet of WiFi. Use WIFI_APPLY_SETTINGS.

WIFI_GATEWAY_DEFAULT

The new gateway of WiFi. Use WIFI_APPLY_SETTINGS.

WIFI_DHCP_ENABLE_DEFAULT

The new Enabled/Disabled state of WiFi DHCP. Use WIFI_APPLY_SETTINGS

WIFI_SSID_DEFAULT

The new SSID (network name) of WiFi. Use WIFI_APPLY_SETTINGS.

WIFI_PASSWORD_DEFAULT

Write the password for the WiFi network, then use WIFI_APPLY_SETTINGS.

WIFI_APPLY_SETTINGS

Apply all new WiFi settings: IP, Subnet, Gateway, DHCP, SSID, Password. 1=Apply

WiFi Status Registers

Name Start Address Type Access Default

WIFI_IP 49200 UINT32 R

WIFI_SUBNET 49202 UINT32 R

WIFI_GATEWAY 49204 UINT32 R

http://labjack.com/print/book/export/html/1173

14 of 81 4/8/2014 1:27 PM

Name Start Address Type Access Default

WIFI_DHCP_ENABLE 49210 UINT16 R

WIFI_SSID 49300 STRING R

WIFI_STATUS 49450 UINT32 R

WIFI_RSSI 49452 FLOAT32 R

WIFI_IP

Read the current IP address of WiFi.

WIFI_SUBNET

Read the current subnet of WiFi.

WIFI_GATEWAY

Read the current gateway of WiFi.

WIFI_DHCP_ENABLE

Read the current Enabled/Disabled state of WiFi DHCP.

WIFI_SSID

Read the current SSID (network name) of WiFi

WIFI_STATUS

Status Codes.

WIFI_RSSI

WiFi RSSI (signal strength). Typical values are -40 for very good, and -75 for very weak. The T7 microcontroller only gets a new RSSI value from the WiFi
module when WiFi communication occurs.

WiFi Power Registers

Name Start Address Type Access Default

POWER_WIFI 48004 UINT16 R/W

POWER_WIFI_DEFAULT 48054 UINT16 R/W

POWER_WIFI

The current ON/OFF state of the WiFi module. Provided to optionally reduce power consumption.

POWER_WIFI_DEFAULT

The ON/OFF state of the WiFi module after a power-cycle to the device.

Some Examples

Read IP Example: To read the wireless IP address of a device, perform a modbus read of address 49200. The value will be returned as an
unsigned 32-bit number, such as 3232235691. Change this number to an IP address by converting each binary group to an octet, and
adding decimal points as necessary. The result in this case would be "192.168.0.171"

Write IP Example: To change the Wireless IP Address of a device, perform a modbus write to address 49250. The IP address must be
passed as an unsigned 32-bit number, such as 3232235691. Change this IP address "192.168.0.171" by converting each octet to a binary
group, and sticking them together.

More Details

Once default wireless configuration register(s) are changed, it is necessary to also write 1 to the WIFI_APPLY_SETTINGS register.
Alternatively, the default settings will be updated on the next power cycle.

Update WiFi Firmware

The WiFi chip on the T7 is a separate chip from the main processor, and it can be updated using the
WIFI_FIRMWARE_UPDATE_TO_VERSIONX register. If connected to the internet, the WiFi chip can download new firmware files from an ftp
server. To innitiate a download and update, write a new firmware version to the WIFI_FIRMWARE_UPDATE_TO_VERSIONX register. At the

time of this writing we recommend using Kipling to update WiFi firmware, since Kipling connects to the FTP server to identify what firmware is

available, and monitors the WIFI_FIRMWARE_UPDATE_STATUS register automatically.

WiFi Firmware Registers

Name Start Address Type Access Default

WIFI_VERSION 60008 FLOAT32 R

WIFI_FIRMWARE_UPDATE_TO_VERSIONX 49402 FLOAT32 W

http://labjack.com/print/book/export/html/1173

15 of 81 4/8/2014 1:27 PM

Name Start Address Type Access Default

WIFI_FIRMWARE_UPDATE_STATUS 49454 UINT32 R

WIFI_VERSION

The current firmware version of the WiFi module, if available.

WIFI_FIRMWARE_UPDATE_TO_VERSIONX

Start an update by using USB or Ethernet to write the desired version to update to.

WIFI_FIRMWARE_UPDATE_STATUS

See status codes in the constants array.

#define WIFI_ASSOCIATED 2900

#define WIFI_ASSOCIATING 2901

#define WIFI_ASSOCIATION_FAILED 2902

#define WIFI_UNPOWERED 2903

#define WIFI_BOOTING_UP 2904

#define WIFI_COULD_NOT_START 2905

#define WIFI_APPLYING_SETTINGS 2906

#define WIFI_DHCP_STARTED 2907

#define WIFI_OTHER 2909

WiFi Range

The WiFi range on the T7 is typical for a modern WiFi device. In direct line-of-sigh with the router, it's possible to get a decent connection at
100m. The table below shows signal strength at varying distances with a stock T7 antenna, and a simple WiFi router. Both the T7 and the
router were positioned 3ft off of the ground, with direct line-of-sight.

Distance RSSI

10m -44dBm

25m -45dBm

50m -55dBm

100m -59dBm

During testing, it was noted that the T7 had slightly better WiFi range than an HTC One V cell phone. The WiFi signal is spotty at RSSI lower
than -70dBm, and the connection will cut off entirely at -80dBm. Note that 90° antenna orientation was used in testing above. That is to say,
keep the antenna in the fully bent upright position, don't try to point it at the router, or accidentally leave it at 45° bent. At 45° bent, or directly
pointed towards the router, the signal strength is reduced by about 5dBm.

OEM Whip Antenna

The OEM whip antenna is a short segment of wire, only 30mm in length. This whip antenna provides an inexpensive solution for adding WiFi
to an OEM board, without the need to figure out mounting of a bigger antenna. The signal strength of a 30mm whip antenna is on average
11dB less than that of the stock antenna. The table below demonstrates the 30mm antenna signal strength at various distances.

Distance RSSI

10m -49dBm

25m -58dBm

50m -70dBm

100m -73dBm

Improve signal strength

The first step to improve the signal strength at large distances is to insure direct line-of-sight. Beyond that, the next best
thing is to elevate the transmitter and receiver antennas. Even an elevation of 1m off the ground helps quite a bit. Be sure
to consider the probability of lightning strikes if the antenna is high relative to the surroundings.

The next step to improve signal strength is to use a directional WiFi antenna. Directional antennas improve range
substantially, such that even a homemade solution can increase range to fifteen times that of a non-directional antenna. If
you need something to work at 500m, it's possible to buy a simple yagi antenna for $60 USD approx.

8.0 LEDs

STATUS - green LED

The status LED is mainly reserved to indicate when Lua scripts are running. The LED will blink when the script
does something.

http://labjack.com/print/book/export/html/1173

16 of 81 4/8/2014 1:27 PM

The status LED also activates during firmware updates to indicate various stages of the process, refer to the
Combined LED Activity section.

COMM - yellow LED

The primary indicator for packet transfer. If the T7 is communicating the COMM LED will be blinking. A few blinks
after connecting to the PC indicates that the T7 is enumerating. Enumeration is when the standard USB
initialization takes place, and the host is gathering device information.

The COMM LED will blink when the T7 receives Modbus commands, or when streaming data. Each packet will produce a single blink. If
commands are issued rapidly, the LED will blink rapidly. At high packet transfer rates the LED will blink at 10Hz, even though more than 10
packets are being processed per second.

Combined LED Activity

When the LEDs blink together, the T7 is computing checksums.

When the LEDs are alternating, the T7 is copying a firmware image.

9.0 VS, Power Supply

Supply Voltage: 4.75 - 5.25 volts (5V ±5% Regulated)

Typical Active Current: 250 mA

Typical Sleep Current: 8 mA

Normal Power Connector: USB-B Receptacle

Typical Power Supply: Any USB-Style Supply

VS Terminals

The VS terminals are designed as outputs for the supply voltage. The supply voltage is nominally 5 volts and typically provided through the
USB connector.

All VS terminals are the same.

The VS connections are outputs, not inputs. Do not connect a power source to VS in normal situations.

The max total current that can be drawn from VS is 500mA - DeviceSupplyCurrent, so if the T7 needs 250mA to run, that leaves 250mA
available from the VS terminals.

Power Supply

Power supply for the T7 is typically provided through the USB connector. For a different board-level connection option see "Alternate Power
Supply" in the OEM section. Typical power supply sources include:

USB host or hub.
Wall-wart power supply with USB connection (included with normal retail units ... not OEM).
Power-over-Ethernet splitter (e.g. TP-Link TL-POE10R with Tensility 10-00240 with Tensility 10-00648).
Car charger with USB ports (e.g. Anker 71AN2452C-WA).
Rechargeable battery with USB ports (e.g. Anker Astro E5 79AN15K-BA perhaps with Belkin F3U133-06INCH).
Battery with car charger (e.g. Anker 79AN15K-BA with 71AN2452C-02WA).

The supply range for specified operation is 4.75 to 5.25 volts, which is the same as the USB specification for voltage provided to a device.
Nonetheless, we have seen some USB host ports providing a lower voltage. If your USB host port has this problem, add a USB hub with a
strong power supply.

See related data in the General section of Specifications.

Normal retail units (not OEM) include a 5V, 2A wall-wart style power supply:

Compatibility Make Mfr. Model No.

http://labjack.com/print/book/export/html/1173

17 of 81 4/8/2014 1:27 PM

North America VA-PSU-US1 JX-B0520B-1-B

Europe VA-PSU-EU1 JX-B0520A-1-B

United Kingdom VA-PSU-UK1 JX-B0520C-1-B

Australia - JX-B0520D-1-B

10.0 SGND and GND

SGND

SGND is located near the upper-left of the device. This terminal has a self-resetting thermal fuse in series with GND. This is often a

good terminal to use when connecting the ground from another separately powered system that could unknowingly already share a

common ground with the T7.

See the AIN, DAC, and Digital I/O(FIO, EIO, CIO, MIO) application notes for more information about grounding.

GND

The GND connections available at the screw-terminals and DB connectors provide a common ground for all LabJack functions. All

GND terminals are the same and connect to the same ground plane.

GND is also connected to the ground pin on the USB connector, so if there is a connection to a USB port on a hub/host (as opposed

to just a power supply connection), then GND is the same as the ground line on the USB connection, which is often the same as ground on the PC chassis, which

is often the same as AC mains ground.

See the AIN, DAC, and Digital I/O (FIO, EIO, CIO, MIO) Sections for more information about grounding.

The max total current that can be sunk into GND is 500mA - DeviceSupplyCurrent, so if the T7 needs 250mA to run, the current sunk into GND terminals should

be limited to 250mA. Note that sinking substantial current into GND can cause slight voltage differences between different ground terminals, which can cause

noticeable errors with single-ended analog input readings.

11.0 SPC

Unless the T7 has problems SPC is not typically needed.

During startup the T7 will look for connections between digital I/O and the SPC terminal. The following list
describes what will happen when a jumper wire is placed between SPC and a listed IO.

SPC wired to:

FIO0: Force boot to main firmware (internal) image.
FIO1: Force copy of backup image to overwrite internal image.
FIO2: Factory reset.
FIO3: Load emergency image. This option loads a firmware image with minimal functionality (kinda like Windows safe-mode). The
update process is about all that can be done while in this mode.

12.0 200uA and 10uA

Overview

The T7 has 2 fixed current source terminals useful for measuring resistance (thermistors, RTDs,
resistors). The 10UA terminal provides about 10 µA and the 200UA terminal provides about 200 µA.

The actual value of each current source is noted during factory calibration and stored with the
calibration constants on the device. These can be viewed using the Kipling software, or read
programmatically. Note that these are fixed constants stored during calibration, not some sort of
current readings.

http://labjack.com/print/book/export/html/1173

18 of 81 4/8/2014 1:27 PM

Using the equation V=IR, with a known current and voltage, it is possible to calculate the resistance of the item in question. Figure 2.5-1
shows a simple setup measuring 1 resistor.

Constant Current Sources

Name Start Address Type Access Default

CURRENT_SOURCE_200UA_CAL_VALUE 1902 FLOAT32 R

CURRENT_SOURCE_10UA_CAL_VALUE 1900 FLOAT32 R

CURRENT_SOURCE_200UA_CAL_VALUE

CURRENT_SOURCE_10UA_CAL_VALUE

For example: To read the actual value of the 200uA current source, perform a read of Modbus address 1902, and the result would be in the
form of a floating point number, e.g. 0.000197456 amps.

Some Examples

Multiple resistances can be measured by putting them in series and measuring the voltage across each. Some applications might need to
use differential inputs to measure the voltage across each resistor, but for many applications it works just as well to measure the
single-ended voltage at the top of each resistor and subtract in software.

 Figure 2.5-1 Figure 2.5-2

Figure 2.5-1 shows a simple setup measuring 1 resistor. If R1=3k, the voltage at AIN0 will be 0.6 volts.

Figure 2.5-2 shows a setup to measure 3 resistors using single-ended analog inputs. If R1=R2=R3=3k, the voltages at AIN0/AIN1/AIN2 will
be 1.8/1.2/0.6 volts. That means AIN0 and AIN1 would be measured with the +/-10 volt range, while AIN2 could be measured with the +/-1
volt range. This points out a potential advantage to differential measurements, as the differential voltage across R1 and R2 could be
measured with the +/-1 volt range, providing better resolution.

 Figure 2.5-3 Figure 2.5-4

Figure 2.5-3 shows a setup to measure 2 resistors using differential analog inputs. AIN3 is wasted in this case, as it is connected to ground,
so a differential measurement of AIN2-AIN3 is the same as a single-ended measurement of AIN2. That leads to Figure 2.5-4, which shows

http://labjack.com/print/book/export/html/1173

19 of 81 4/8/2014 1:27 PM

R1 and R2 measured differentially and R3 measured single-ended.

Specifications

The current sources can drive about 3 volts max, thus limiting the maximum load resistance to about 300 kO (10UA) and 15 kO (200UA).
Keep in mind that high source resistance could cause settling issues for analog inputs.

The current sources have good accuracy and tempco, but for improvement a fixed resistor can be used as one of the resistors in the figures
below. The Y1453-100 and Y1453-1.0K from Digikey have excellent accuracy and very low tempco. By measuring the voltage across one of
these you can calculate the actual current at any time.

The following charts show the typical tempco of the current sources over temperature. The 10UA current source has a very low tempco
across temperature. The 200 UA current source has a good tempco from about 0-50 degrees C, and outside of that range the effect of
tempco will be more noticeable.

13.0 Digital I/O

http://labjack.com/print/book/export/html/1173

20 of 81 4/8/2014 1:27 PM

Digital I/O: 23

Logic Level: 3.3V

DIO is a generic name used for all digital I/O. The DIO are subdivided into different ports called FIO, EIO, CIO, and MIO.

FIO (0-7) EIO (0-7) CIO (0-3) MIO (0-2)

DIO 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

DIO Mapping

There are 4 types of registers used for digital I/O interaction: Simple DIO#, DIO State, DIO Direction, and DIO Inhibit

Simple Digital I/O#

Read or set the state of 1 digital I/O. Automatically configures the direction to input (when reading) or to output (when writing).

FIO0-FIO7 = DIO0-DIO7

EIO0-EIO7 = DIO8-DIO15

CIO0-CIO3 = DIO16-DIO19

MIO0-MIO2 = DIO20-DIO22

Digital I/O

Name Start Address Type Access Default

FIO#(0:7) 2000 UINT16 R/W

EIO#(0:7) 2008 UINT16 R/W

CIO#(0:3) 2016 UINT16 R/W

MIO#(0:2) 2020 UINT16 R/W

FIO#(0:7)

Read or set the state of 1 bit of digital I/O. Also configures the direction to input or output.

Names Addresses

FIO0, FIO1, FIO2, Show All 2000, 2001, 2002, Show All

EIO#(0:7)

Read or set the state of 1 bit of digital I/O. Also configures the direction to input or output.

Names Addresses

EIO0, EIO1, EIO2, Show All 2008, 2009, 2010, Show All

CIO#(0:3)

Read or set the state of 1 bit of digital I/O. Also configures the direction to input or output.

Names Addresses

CIO0, CIO1, CIO2, Show All 2016, 2017, 2018, Show All

MIO#(0:2)

Read or set the state of 1 bit of digital I/O. Also configures the direction to input or output.

Names Addresses

MIO0, MIO1, MIO2 2020, 2021, 2022

$(document).ready(function() { $('.collapsed-content-expander').closest('.content').find('.sometimes-shown').hide(); $('.collapsed-content-
expander').click(function(e) { $(e.target).closest('.content').find('.collapsed-content-expander').fadeOut(function () {
$(e.target).closest('.content').find('.sometimes-shown').fadeIn(); }); return false; }); });

Digital I/O State Bit Masks

Each of these is a single binary-encoded value representing the state of 8 bits of I/O. Each bit represents an I/O line. Does not configure
direction. A read of an output returns the current logic level on the terminal, not necessarily the output state written. The upper 8-bits of these
values are inhibits. The inhibit bits prevent the corresponding state bit from being modified.

http://labjack.com/print/book/export/html/1173

21 of 81 4/8/2014 1:27 PM

State Bit Masks

Name Start Address Type Access Default

FIO_STATE 2500 UINT16 R/W

EIO_STATE 2501 UINT16 R/W

CIO_STATE 2502 UINT16 R/W

MIO_STATE 2503 UINT16 R/W

FIO_STATE

Read or write the state of the 8 bits of FIO in a single binary-encoded value. Does not configure direction. A read of an output returns the current logic level on
the terminal, not necessarily the output state written. The upper 8-bits of this value are inhibits.

EIO_STATE

Read or write the state of the 8 bits of EIO in a single binary-encoded value. Does not configure direction. A read of an output returns the current logic level on
the terminal, not necessarily the output state written. The upper 8-bits of this value are inhibits.

CIO_STATE

Read or write the state of the 4 bits of CIO in a single binary-encoded value. Does not configure direction. A read of an output returns the current logic level on
the terminal, not necessarily the output state written. The upper 8-bits of this value are inhibits.

MIO_STATE

Read or write the state of the 3 bits of MIO in a single binary-encoded value. Does not configure direction. A read of an output returns the current logic level on
the terminal, not necessarily the output state written. The upper 8-bits of this value are inhibits.

For example: To read the digital state of all FIO lines in a bit mask, read FIO_STATE. The value will be something like 0b11111011
representing 1 for logic high, and 0 for logic low. FIO2 is currently logic low.

Digital I/O Direction Bit Masks

Each of these is a single binary-encoded value representing the direction of 8 bits of I/O. Each bit designates an I/O line. 0=Input and
1=Output. The upper 8-bits of this value are inhibits. The inhibit bits prevent the corresponding direction bit from being modified.

Direction Bit Masks

Name Start Address Type Access Default

FIO_DIRECTION 2600 UINT16 R/W

EIO_DIRECTION 2601 UINT16 R/W

CIO_DIRECTION 2602 UINT16 R/W

MIO_DIRECTION 2603 UINT16 R/W

FIO_DIRECTION

Read or write the direction of the 8 bits of FIO in a single binary-encoded value. 0=Input and 1=Output. The upper 8-bits of this value are inhibits.

EIO_DIRECTION

Read or write the direction of the 8 bits of EIO in a single binary-encoded value. 0=Input and 1=Output. The upper 8-bits of this value are inhibits.

CIO_DIRECTION

Read or write the direction of the 4 bits of CIO in a single binary-encoded value. 0=Input and 1=Output. The upper 8-bits of this value are inhibits.

MIO_DIRECTION

Read or write the direction of the 3 bits of MIO in a single binary-encoded value. 0=Input and 1=Output. The upper 8-bits of this value are inhibits.

For example: To set FIO1-7 to output, write a value of 0x01FF to FIO_DIRECTION. FIO0 is the least significant bit, so to prevent
modification the corresponding inhibit bit is set with 0x01 in the most significant byte. The least significant byte is 0xFF, which is all 8 bits of
FIO set to output.

Alternative DIO Registers

The DIO registers are the same thing as EIO, FIO, CIO, and MIO but with a more intuitive naming scheme, and a more compact register
allotment.

DIO Registers

Name Start Address Type Access Default

DIO#(0:22) 2000 UINT16 R/W

DIO_STATE 2800 UINT32 R/W

DIO_DIRECTION 2850 UINT32 R/W

DIO_INHIBIT 2900 UINT32 R/W

DIO#(0:22)

Read or set the state of 1 bit of digital I/O. Also configures the direction to input or output.

Names Addresses

DIO0, DIO1, DIO2, Show All 2000, 2001, 2002, Show All

http://labjack.com/print/book/export/html/1173

22 of 81 4/8/2014 1:27 PM

DIO_STATE

Read or write the state of all digital I/O in a single binary-encoded value. Does not configure direction. A read of an output returns the current logic level on the
terminal, not necessarily the output state written. Writes only apply to bits with mask set.

DIO_DIRECTION

Read or write the direction of all digital I/O in a single binary-encoded value. 0=Input and 1=Output. Writes only apply to bits with mask set.

DIO_INHIBIT

A single binary-encoded value where each bit determines whether _STATE or _DIRECTION writes affect that bit of digital I/O. 0=Default=Affected, 1=Ignored.

$(document).ready(function() { $('.collapsed-content-expander').closest('.content').find('.sometimes-shown').hide(); $('.collapsed-content-
expander').click(function(e) { $(e.target).closest('.content').find('.collapsed-content-expander').fadeOut(function () {
$(e.target).closest('.content').find('.sometimes-shown').fadeIn(); }); return false; }); });

Electrical Overview

All digital I/O on the T7 have 3 possible states: input, output-high, or output-low. Each bit of I/O can be configured individually. When
configured as an input, a bit has a ~100 kΩ pull-up resistor to 3.3 volts (all digital I/O are at least 5 volt tolerant). When configured as
output-high, a bit is connected to the internal 3.3 volt supply (through a series resistor). When configured as output-low, a bit is connected to
GND (through a series resistor).

See electrical specifications for more details.

By default, the DIO lines are digital I/O, but they can also be configured as PWM Output, Quadrature Input, Counters, etc (see Extended
Feature section of this Datasheet).

FIO vs. EIO vs. CIO vs. MIO

DIO is a generic name used for all digital I/O. The DIO are subdivided into different groups called FIO, EIO, CIO, and MIO.

Sometimes these are referred to as different "ports". For example, FIO is an 8-bit port of digital I/O and EIO is a different 8-bit port of digital
I/O. The different names (FIO vs. EIO vs. CIO vs. MIO) have little meaning, and generally you can call these all DIO0-DIO22 and consider
them all the same. There are a couple details unique to different ports:

The source impedance of an FIO line is about 550 ohms, whereas the source impedance of EIO/CIO/MIO lines is about 180 ohms.
Source impedance might be important when sourcing or sinking substantial currents, such as when controlling relays.
The MIO lines are automatically controlled when using analog input channel numbers from 16 to 127. This is for controlling external
multiplexers or the Mux80 expansion board.

Power-up Defaults

The default condition of the digital I/O can be configured by the user. From the factory, all digital I/O are configured as inputs by default. Note
that even if the default for a line is changed to output-high or output-low, there could be a small time (milliseconds) during boot-up where all
digital I/O are in the factory default condition.

Protection

All the digital I/O include an internal series resistor that provides overvoltage/short-circuit protection. These series resistors also limit the
ability of these lines to sink or source current. Refer to the Digital I/O Specifications.

The fact that the digital I/O are specified as 5-volt tolerant means that 5 volts can be connected to a digital input without problems (see the
actual limits in the specifications in Appendix A).

Increase logic level to 5V

In some cases, an open-collector style output can be used to get a 5V signal. To get a low set the line to output-low, and to get a high set the
line to input. When the line is set to input, the voltage on the line is determined by a pull-up resistor. The T7 has an internal ~100k resistor to
3.3V, but an external resistor can be added to a different voltage. Whether this will work depends on how much current the load is going to
draw and what the required logic thresholds are. Say for example a 10k resistor is added from EIO0 to VS. EIO0 has an internal 100k pull-up
to 3.3 volts and a series output resistance of about 180 ohms. Assume the load draws just a few microamps or less and thus is negligible.
When EIO0 is set to input, there will be 100k to 3.3 volts in parallel with 10k to 5 volts, and thus the line will sit at about 4.85 volts. When the
line is set to output-low, there will be 180 ohms in series with the 10k, so the line will be pulled down to about 0.1 volts.

The surefire way to get 5 volts from a digital output is to add a simple logic buffer IC that is powered by 5 volts and recognizes 3.3 volts as a
high input. Consider the CD74ACT541E from TI (or the inverting CD74ACT540E). All that is needed is a few wires to bring VS, GND, and the
signal from the LabJack to the chip. This chip can level shift up to eight 0/3.3 volt signals to 0/5 volt signals and provides high output drive
current (+/-24 mA).

Note: DAC0, DAC1 channels on the T7 can be set to 5 volts, providing 2 output lines with such capability.

13.1 DIO Extended Features

http://labjack.com/print/book/export/html/1173

23 of 81 4/8/2014 1:27 PM

Digital extended features measure and generate digital waveforms. Almost every digital I/O line can be assigned a feature and many can be
active simultaneously. Features include things like PWM, Quadrature, and pulse generation. Features are assigned to DIOs using their type
index, and configured using the options, and value registers.

The table below lists the features available on each DIO. The Digital I/O of the LabJack are on the top of the table, with the features to the
left.

FIO (0-7) EIO (0-7) CIO (0-3)

DIO

Feature Index# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

PWM Out 0 ✔ ✔ ✔ ✔ ✔

PWM Out with Phase 1 ✔ ✔ ✔ ✔ ✔

Pulse Out 2 ✔ ✔ ✔ ✔ ✔

Frequency In 3,4 ✔ ✔

Pulse Width In 5 ✔ ✔

Line-to-Line In 6 ✔ ✔

High-Speed Counter 7 ✔ ✔ ✔ ✔

Interrupt Counter 8 ✔ ✔ ✔ ✔ ✔ ✔

Interrupt Counter with Debounce 9 ✔ ✔ ✔ ✔ ✔ ✔

Quadrature In 10 ✔ ✔ ✔ ✔ ✔ ✔

Interrupt Frequency In 11 ✔ ✔ ✔ ✔ ✔ ✔

Digital I/O Extended Features

PWM Out - Produces a rectangular output with variable frequency and variable duty cycle.
PWM Out with Phase - Allows a phase difference between multiple PWM outputs.
Pulse Out - You can specify the number of pulses, frequency of pulses, and pulse-width.
Frequency In - Measures the period/frequency.
Pulse Width In - Measures the high and low time, and thus also measures duty cycle.
Line-to-Line In - Measures the time between edges on 2 different DIO lines.
High-Speed Counter - Hardware-based edge counter.
Interrupt Counter - A hardware edge counter that must service an interrupt for each edge.
Interrupt Counter with Debounce - Use to avoid counting bounces from mechanical switches.
Quadrature In - Tracks the forward/reverse count provided by a quadrature signal.
Interrupt Frequency In - Frequency measurement that must service an interrupt for each edge.

Each digital IO has a set of registers dedicated to the configuration of and results produced by the Extended Features. These registers are
used to perform four operations on the Extended Feature: Configure, Read, Update, and Reset. Below you will find general descriptions of
the four operations. Details about each feature can be found in their corresponding sections.

Configure:

Configuration is the initial setup of the Extended Feature. Configuration requires that any EF running at the pin in question first be disabled.
Options can then be loaded. Then the EF can be enabled. The following seven registers are used for configuration:

DIO#_EF_ENABLE – 0 = Disable, 1 = Enable
DIO#_EF_INDEX – Index number specifying the Extended Feature
DIO#_EF_OPTIONS – Bits 2-0: Specifies the clock source to use
DIO#_EF_VALUE_A – Extended Feature specific value
DIO#_EF_VALUE_B – Extended Feature specific value
DIO#_EF_VALUE_C – Extended Feature specific value
DIO#_EF_VALUE_D – Extended Feature specific value

Read:

Some Extended Features produce results or provide status information that can be read. This information is usually a binary integer. When
possible, the LabJack will convert the binary integer into a real-world unit such as seconds. When available, converted values can be read
from the registers designated with “_F.” The following registers are used to read results from a DIO Extended Feature:

DIO#_EF_READ_A – Extended feature specific value. Reading this value takes a snapshot of READ_B, READ_B_F.
DIO#_EF_READ_B – Extended feature specific value. Reading this returns the snapshot acquired by READ_A.
DIO#_EF_READ_A_F – Returns READ_A converted to a real-world value and takes a snapshot of READ_B, READ_B_F.
DIO#_EF_READ_B_F – Returns the READ_B snapshot converted to a real-world value.

http://labjack.com/print/book/export/html/1173

24 of 81 4/8/2014 1:27 PM

Update:

Some Extended Features can be updated while running. Updating allows the Extended Feature to change its operation parameters without
restarting. Note that the ClockSource and Feature Index can not be changed in an update. Depending on the feature, reads and writes to the
update registers have small differences. See the Update portion of each features dedicated section for more information. The following four
registers can be used to update an active Extended Feature:

DIO#_EF_VALUE_A – Extended feature specific value
DIO#_EF_VALUE_B – Extended feature specific value
DIO#_EF_VALUE_C – Extended feature specific value
DIO#_EF_VALUE_D – Extended feature specific value

Reset:

Some Extended Features can be reset while they are running. Resetting can have different results depending on the feature. For instance
counters are reset to zero. There is only one register associated with resetting:

DIO#_EF_READ_A_AND_RESET – Extended feature specific value. Reading this resets the Extended Feature and takes a snapshot of
READ_B so that it can be read as in the Read section. Values are read before the reset.
DIO#_EF_READ_A_F_AND_RESET – Returns the same information as DIO#_EF_READ_A_F. Reading this resets the Extended Feature
and takes a snapshot of READ_B_F. Values are read before the reset.

Digital Extended Features

Name Start Address Type Access Default

DIO#(0:22)_EF_ENABLE 44000 UINT32 R/W

DIO#(0:22)_EF_INDEX 44100 UINT32 R/W

DIO#(0:22)_EF_OPTIONS 44200 UINT32 R/W

DIO#(0:22)_EF_VALUE_A 44300 UINT32 R/W

DIO#(0:22)_EF_VALUE_B 44400 UINT32 R/W

DIO#(0:22)_EF_VALUE_C 44500 UINT32 R/W

DIO#(0:22)_EF_VALUE_D 44600 UINT32 R/W

DIO#(0:22)_EF_READ_A 3000 UINT32 R

DIO#(0:22)_EF_READ_A_AND_RESET 3100 UINT32 R

DIO#(0:22)_EF_READ_B 3200 UINT32 R

DIO#(0:22)_EF_ENABLE

Names Addresses

DIO0_EF_ENABLE, DIO1_EF_ENABLE,

DIO2_EF_ENABLE, Show All

44000, 44002, 44004, Show All

DIO#(0:22)_EF_INDEX

An index to specify the feature you want.

Names Addresses

DIO0_EF_INDEX, DIO1_EF_INDEX,

DIO2_EF_INDEX, Show All

44100, 44102, 44104, Show All

DIO#(0:22)_EF_OPTIONS

Names Addresses

DIO0_EF_OPTIONS, DIO1_EF_OPTIONS,

DIO2_EF_OPTIONS, Show All

44200, 44202, 44204, Show All

DIO#(0:22)_EF_VALUE_A

Names Addresses

DIO0_EF_VALUE_A, DIO1_EF_VALUE_A,

DIO2_EF_VALUE_A, Show All

44300, 44302, 44304, Show All

DIO#(0:22)_EF_VALUE_B

Names Addresses

DIO0_EF_VALUE_B, DIO1_EF_VALUE_B,

DIO2_EF_VALUE_B, Show All

44400, 44402, 44404, Show All

DIO#(0:22)_EF_VALUE_C

Names Addresses

DIO0_EF_VALUE_C, DIO1_EF_VALUE_C,

DIO2_EF_VALUE_C, Show All

44500, 44502, 44504, Show All

http://labjack.com/print/book/export/html/1173

25 of 81 4/8/2014 1:27 PM

DIO#(0:22)_EF_VALUE_D

Names Addresses

DIO0_EF_VALUE_D, DIO1_EF_VALUE_D,

DIO2_EF_VALUE_D, Show All

44600, 44602, 44604, Show All

DIO#(0:22)_EF_READ_A

Names Addresses

DIO0_EF_READ_A, DIO1_EF_READ_A,

DIO2_EF_READ_A, Show All

3000, 3002, 3004, Show All

DIO#(0:22)_EF_READ_A_AND_RESET

Names Addresses

DIO0_EF_READ_A_AND_RESET,

DIO1_EF_READ_A_AND_RESET,

DIO2_EF_READ_A_AND_RESET, Show All

3100, 3102, 3104, Show All

DIO#(0:22)_EF_READ_B

Names Addresses

DIO0_EF_READ_B, DIO1_EF_READ_B,

DIO2_EF_READ_B, Show All

3200, 3202, 3204, Show All

$(document).ready(function() { $('.collapsed-content-expander').closest('.content').find('.sometimes-shown').hide(); $('.collapsed-content-
expander').click(function(e) { $(e.target).closest('.content').find('.collapsed-content-expander').fadeOut(function () {
$(e.target).closest('.content').find('.sometimes-shown').fadeIn(); }); return false; }); });

How-To: Use a digital extended feature

Disable features on the DIO using ..._EF_ENABLE1.
Select a feature, and assign the corresponding type index to ..._EF_INDEX2.
Write to ..._EF_OPTIONS (if necessary)3.
Write to ..._EF_VALUE_A, ..._EF_VALUE_B, ..._EF_VALUE_C, ..._EF_VALUE_D (if necessary)4.
Enable feature on the DIO using ..._EF_ENABLE5.
Read results using ..._EF_READ_A, ..._EF_READ_B, or ..._EF_READ_A_AND_RESET6.

13.1.1 EF Clock Source

The ClockSources produce the reference frequencies used to generate output waveforms and measure input waveforms. ClockSource
settings control output frequency, PWM resolution, maximum measurable period, and measurement resolution.

Clock#Frequency = CoreFrequency / DIO_EF_CLOCK#_DIVISOR //typically 80M/Divisor

There are 3 DIO EF clock sources available. Each clock source has an associated bit size and several mutual exclusions. Mutual exclusions
exist because the clock sources share hardware with other features. A ClockSource is created form a hardware counter. CLOCK1 uses
COUNTER_A (CIO0) and CLOCK2 uses COUNTER_B (CIO1). The 32-bit clock source (CLOCK0) is created by combining the 2 16-bit clock
sources (CLOCK1 CLOCK2). The following list provides ClockSource bit sizes and mutual exclusions.

CLOCK0: 32-bit. Mutual Exclusions: CLOCK1, CLOCK2, COUNTER_A (CIO0), COUNTER_B(CIO1)
CLOCK1: 16-bit. Mutual Exclusions: CLOCK0, COUNTER_A (CIO0)
CLOCK2: 16-bit. Mutual Exclusions: CLOCK0, COUNTER_B (CIO1)

The clock source is not a DIO EF feature, but the four basic operations of Configure, Read, Update, and Reset still apply:

Configure:

There are four registers associated with the configuration of clock sources:
DIO_EF_CLOCK#_ENABLE: 1 = Enable, 0 = Disable. Must be disabled to change the configuration.
DIO_EF_CLOCK#_DIVISOR: 1, 2, 4, 8, 16, 32, 64, or 256 (if this value is zero the divisor will be set to 1).
DIO_EF_CLOCK#_OPTIONS: Reserved for future use. Write 0.
DIO_EF_CLOCK#_ROLL_VALUE: The ClockSource will count to VALUE-1 then roll to zero and repeat. This is a 32-bit value
(0-4294967295) if using a 32-bit clock, and a 16-bit value (0-65535) if using a 16-bit clock. 0 results in the max roll value possible.

A ClockSource can be enabled after DIO EF_INDEX has been configured. This allows several DIO EFs to be started at the same time.

Read:

DIO_EF_CLOCK#_COUNT: Returns the current value of a clock source's counter. This can useful for generating timestamps.

http://labjack.com/print/book/export/html/1173

26 of 81 4/8/2014 1:27 PM

Update:

At this time there are no update operations available for the DIO EF clock sources. A clock source must be disabled to change any settings.

A smooth update feature has been added in firmware 1.0035. Both the roll_value and the divisor can be written while a clock source is
running. As long as the clock source's period is greater than 50 µs the clock will seamlessly switch to the new settings.

Reset:

At this time there are no reset operations available for the DIO EF clock sources.

Example:

Configure CLOCK0 as a 10 MHz clock source with a roll-value of 1000000.

DIO_EF_CLOCK0_ENABLE = 0
DIO_EF_CLOCK0_DIVISOR = 8
DIO_EF_CLOCK0_ROLL_VALUE = 1000000
DIO_EF_CLOCK0_ENABLE = 1

With this clock configuration, PWM output (index=0) will have a frequency of 10 Hz. A frequency input measurement (index=3/4) will be able
to count from 0-999999 with each count equal to 0.1 microseconds, and thus a max period of about 0.1 seconds.

Advanced:

If CLOCK0 is enabled and CLOCK1 and CLOCK2 are disabled, you can still select CLOCK1 or CLOCK2 as the source for a DIO EF channel.
CLOCK1 CLOCK2 are actually the LSW & MSW of CLOCK0. The frequency of CLOCK1 is the same as CLOCK0. If
DIO_EF_CLOCK0_ROLL_VALUE is >= 2^16, then the frequency of CLOCK2 is CLOCK0_freq divided by the modulus (remainder portion) of
CLOCK0_freq / 2^16. If (CLOCK0_ROLL_VALUE - 1) is < 2^16, then the frequency of CLOCK2 is 0. CLOCK1_ROLL_VALUE is the
modulus of (CLOCK0_ROLL_VALUE - 1) / 2^16 and CLOCK2_ROLL_VALUE is the quotient (integer portion) of (CLOCK0_ROLL_VALUE -
1) / 2^16.

Digital EF Clock Source

Name Start Address Type Access Default

DIO_EF_CLOCK0_ENABLE 44900 UINT16 R/W

DIO_EF_CLOCK0_DIVISOR 44901 UINT16 R/W

DIO_EF_CLOCK0_OPTIONS 44902 UINT32 R/W

DIO_EF_CLOCK0_ROLL_VALUE 44904 UINT32 R/W

DIO_EF_CLOCK0_COUNT 44908 UINT32 R

DIO_EF_CLOCK0_ENABLE

DIO_EF_CLOCK0_DIVISOR

DIO_EF_CLOCK0_OPTIONS

DIO_EF_CLOCK0_ROLL_VALUE

DIO_EF_CLOCK0_COUNT

Current tick count of this clock. Will read between 0 and ROLL_VALUE-1.

13.1.2 PWM Out

Capable DIO: FIO0, FIO2, FIO3, FIO4, and FIO5

Requires Clock Source: Yes

Index: 0

PWM Out will generate a pulse width modulated wave form.

Operation:

PWM output will set the DIO high and low relative to the clock source's count. When the the count is zero the DIO line will be set high. When
the count matches Value A the line will be set low. Therefore Value A is used to control the duty cycle and the resolution is equal to the roll
value.

Clock#Frequency = CoreFrequency / DIO_EF_CLOCK#_DIVISOR // typically 80M/Divisor
PWMFrequency = Clock#Frequency / DIO_EF_CLOCK#_ROLL_VALUE

DutyCycle% = 100 * DIO#_EF_CONFIG_A / DIO_EF_CLOCK#_ROLL_VALUE

PWM Out is capable of glitch-free updates in most situations. A glitch-free update means that the PWM will finish the current period

http://labjack.com/print/book/export/html/1173

27 of 81 4/8/2014 1:27 PM

consisting of the high time then the low time before loading the new value. The next period will then have the new duty cycle. This is true for
all cases except zero. When setting the duty cycle to zero the line will be set low regardless of the current position. This means that a single
high pulse with duration between zero and the previous high time can be output before the line goes low.

Configure:

DIO#_EF_ENABLE: 0 = Disable, 1 = Enable
DIO#_EF_INDEX: 0
DIO#_EF_OPTIONS: Bits 0-2 specify which clock source to use. All other bits reserved (write 0).
DIO#_EF_CONFIG_A: When the specified clocks source's count matches this value the line will transition from high to low.
DIO#_EF_CONFIG_B: Not used.
DIO#_EF_CONFIG_C: Not used.
DIO#_EF_CONFIG_D: Not used.

Update:

The duty cycle can be updated at any time. To update, write the new value to Value_A. The new value will not be used until the clock source
rolls to zero. This means that at the end of the current period the new value will be loaded resulting in a glitch-free transition.

DIO#_EF_CONFIG_A: Values written here will set the new duty cycle. The new value will not take effect until the selected clock source rolls
to zero.

Read:

No information is returned by PWM Out

Reset:

Reset has no affect on this feature.

Example:

Generate a 10 kHz PWM starting at 25% DC.
First configure the clock source. The higher the roll value the greater the duty cycle resolution will be. For the highest resolution, we want to
maximize the roll value, so use the smallest clock divisor that will not result in a roll value greater than the clock source's maximum (32-bits or
16-bits). With a divisor of 1 the roll value will be 8000: 80 MHz / (1 * 8000) = 10 kHz. Now set the registers accordingly:

DIO_EF_CLOCK0_ENABLE = 0
DIO_EF_CLOCK0_DIVISOR = 1
DIO_EF_CLOCK0_ROLL_VALUE = 8000
DIO_EF_CLOCK0_ENABLE = 1

Once the clock source is configured we can use the roll value to calculated Config_A: DC = 25% = 100 * Config_A / 8000. So Config_A =
2000. Now the PWM can be turned on by writing the proper registers:

DIO0_EF_ENABLE = 0
DIO0_EF_INDEX = 0
DIO0_EF_CONFIG_A = 2000
DIO0_EF_ENABLE = 1

13.1.3 PWM Out with Phase

Capable DIO: FIO0, FIO2, FIO3, FIO4, FIO5

Requires Clock Source: Yes

Index: 1

PWM Output with phase control generates PWM waveforms with the pulse positioned at different points in the period. This is achieved by
setting the DIO line high and low relative to the clock source's count.

Clock#Frequency = CoreFrequency / DIO_EF_CLOCK#_DIVISOR // typically 80M/Divisor
PWMFrequency = Clock#Frequency / DIO_EF_CLOCK#_ROLL_VALUE

DutyCycle% = 100 * (DIO#_EF_CONFIG_A - DIO#_EF_CONFIG_B) / DIO_EF_CLOCK#_ROLL_VALUE

http://labjack.com/print/book/export/html/1173

28 of 81 4/8/2014 1:27 PM

PhaseOffset = 360º * DIO#_EF_CONFIG_A / DIO_EF_CLOCK#_ROLL_VALUE

When the the count matches Value_B the DIO line will be set high. When the count matches Value A the line will be set low. Therefore
Value_A minus Value_B controls the duty cycle.

Configure:

DIO#_EF_ENABLE: 0 = Disable, 1 = Enable
DIO#_EF_INDEX: 1
DIO#_EF_OPTIONS: Bits 0-2 specify which clock source to use. All other bits reserved (write 0).
DIO#_EF_CONFIG_A: When the clock source's count matches this value the line will transition from high to low.
DIO#_EF_CONFIG_B:When the clock source's count matches this value the line will transition from low to high.
DIO#_EF_CONFIG_B: Not used.
DIO#_EF_CONFIG_B: Not used.

Update:

The duty cycle can be updated at any time. To update, write the new value to Config_A then Config_B. The value written to Config_A is
stored until Config_B is written. After writing Config_B the new value will be loaded at the start of the next period. Updates are glitch-less
unless switching from a very high to very low duty cycle or a very low to very high duty cycle.

DIO#_EF_CONFIG_A: Values written here will set the new falling position. The new value will not take effect until Config_B is written.
DIO#_EF_CONFIG_B: Values written here will set the new rising position. When Config_B is written the new Config_A is also loaded.

Read:

No information is returned by PWM Out with Phase.

Reset:

Reset has no affect on this feature.

13.1.4 Pulse Out

Capable DIO: FIO0, FIO2, FIO3, FIO4, FIO5

Requires Clock Source: Yes

Index: 2

Pulse output will generate a specified number of pulses. The high time and the low time are specified relative to the clock source the same
way as PWM with Phase Control.

Clock#Frequency = CoreFrequency / DIO_EF_CLOCK#_DIVISOR // typically 80M/Divisor
PWMFrequency = Clock#Frequency / DIO_EF_CLOCK#_ROLL_VALUE

DutyCycle% = 100 * (DIO#_EF_CONFIG_A - DIO#_EF_CONFIG_B) / DIO_EF_CLOCK#_ROLL_VALUE // if A > B

Configure:

DIO#: First set the DIO line low (DIO#=0). The line must start low for proper pulse generation.
DIO#_EF_ENABLE: 0 = Disable, 1 = Enable
DIO#_EF_INDEX: 2
DIO#_EF_OPTIONS: Bits 0-2 specify which clock source to use. All other bits reserved (write 0).
DIO#_EF_CONFIG_A: When the specified clock source's count matches this value the line will transition from high to low.
DIO#_EF_CONFIG_B: When the specified clock source's count matches this value the line will transition from low to high.
DIO#_EF_CONFIG_C: The number of pulses to generate.
DIO#_EF_CONFIG_D: Not used.

Update:

DIO#_EF_CONFIG_A: Sets a new high to low transition point. Will take effect when writing Config_C.
DIO#_EF_CONFIG_B: Sets a new low to high transition point. Will take effect when writing Config_C.

http://labjack.com/print/book/export/html/1173

29 of 81 4/8/2014 1:27 PM

DIO#_EF_CONFIG_C: Writing to this value will start a new pulse sequence. If a sequence is already in progress it will be aborted. Numbers
previously written to Config_A or Config_B will take effect when Config_C is written.

Read:

DIO#_EF_READ_A: The number of pulses that have been completed.
DIO#_EF_READ_B: The target number of pulses.
DIO#_EF_READ_C: Not used.
DIO#_EF_READ_D: Not used.

Reset:

DIO#_EF_READ_A_AND_RESET: Reads number of pulses that have been completed. Then restarts the pulse sequence.

Example:

First configure a clock source to drive the pulse generator. Assuming the core frequency is 80 MHz writing the following registers will produce
a 1 kHz pulse frequency.

DIO_EF_CLOCK0_DIVISOR = 8
DIO_EF_CLOCK0_ROLL_VALUE = 10000
DIO_EF_CLOCK0_ENABLE = 1

Thus Clock0Frequency = 80 MHz / 8 = 10 MHz, and PWMFrequency = 10 MHz / 10000 = 1 kHz.

Now that we have a clock to work with we can configure our pulse.

DIO0_EF_ENABLE = 0
DIO0 = 0 // set DIO0 to output-low
DIO0_EF_INDEX = 2 // pulse out type index
DIO0_EF_CONFIG_A = 2000 // high to low count
DIO0_EF_CONFIG_B = 0 // low to high count
DIO0_EF_CONFIG_C = 5000 // number of pulses
DIO0_EF_ENABLE = 1

Thus duty cycle = 100 * (2000 - 0) / 10000 = 20%. The LabJack will now output 5000 pulses over 5 seconds at 20% duty cycle.

13.1.5 Frequency In

Capable DIO: FIO0, FIO1

Requires Clock Source: Yes

Index: 3 (positive edges) or 4 (negative edges)

Frequency In will measure a period by counting the number of clock source ticks between two edges ... rising-to-rising (index=3) or falling-
to-falling (index=4). The number of ticks can be read from DIO#_EF_READ_A. The following formula will produce period in seconds.

Clock#Frequency = CoreFrequency / DIO_EF_CLOCK#_DIVISOR //typically 80M/Divisor

Period (s) = DIO#_EF_READ_A / Clock#Frequency

Frequency (Hz) = Clock#Frequency / DIO#_EF_READ_A

Resolution (s) = 1 / Clock#Frequency

Max Period (s) = DIO_EF_CLOCK#_ROLL_VALUE / Clock#Frequency

Roll value for this purpose would typically be left at the default of 0, which is the max value (2^32 for the 32-bit Clock0), but you might be
using a lower roll value for another feature such as PWM output.

A couple typical scenarios with roll value = 0 and using the 32-bit clock (Clock0):

Divisor = 1, Resolution = 12.5 nanoseconds, MaxPeriod = 53.7 seconds
Divisor = 256, Resolution = 3.2 microseconds, MaxPeriod = 229 minutes

Once this feature is enabled, a new measurement happens on every applicable edge and the result registers are updated. If you do another
read before a new edge has occurred, you will get the same value as before. Many applications will want to use the read-and-reset option so
that a value is only read once and extra reads will return 0.

http://labjack.com/print/book/export/html/1173

30 of 81 4/8/2014 1:27 PM

Configure:

DIO#_EF_ENABLE: 0 = Disable, 1 = Enable
DIO#_EF_INDEX: 3 or 4
DIO#_EF_OPTIONS: Bits 0-2 specify which ClockSource to use. All other bits reserved (write 0).
DIO#_EF_CONFIG_A: Not used.
DIO#_EF_CONFIG_B: Not used.
DIO#_EF_CONFIG_C: Not used.
DIO#_EF_CONFIG_D: Not used.

Update:

No update operations can be performed on Frequency In.

Read:

DIO#_EF_READ_A: Returns the measured time in ClockSource ticks from one edge to another. If a full period has not yet been observed
this value will be zero.
DIO#_EF_READ_B: Not used by this feature.
DIO#_EF_READ_A_F: Returns the period in seconds. If a full period has not yet been observed this value will be zero.

Reset:

DIO#_EF_READ_A_AND_RESET: Returns the same data as DIO#_EF_READ_A and then clears the result so that zero is returned by
subsequent reads until another full period is measured.

Example:

First, configure the clock source. Roll value would usually be set to 0 to provide the maximum measurable period, but assume for this
example that we have to use 10000 because of PWM output on another channel:

DIO_EF_CLOCK0_DIVISOR = 8 // Clock0Frequency = 80M/8 = 10 MHz
DIO_EF_CLOCK0_ROLL_VALUE = 10000
DIO_EF_CLOCK0_ENABLE = 1

This clock configuration results in Resolution = 1 / 10M = 0.1 us and MaxPeriod = 10000 / 10M = 1 ms.

Now configure the DIO_EF on FIO0 as frequency input.

DIO0_EF_INDEX = 3 or 4 // Select rising or falling edges.
DIO#_EF_OPTIONS = 0 // Select the clock source.
DIO0_EF_ENABLE = 1 // Turn on the DIO_EF

At this point the LabJack is watching the IO lines for the specified edge. After the first two edges have been observed the time between them
is stored, and this repeats for each subsequent edge. Results can be read from the READ registers defined above.

13.1.6 Pulse Width In

Capable DIO: FIO0, FIO1

Requires Clock Source: Yes

Index: 5

Pulse width in will measure the high time and low time of a periodic signal. The maximum measurable period is controlled by the
SourceClock's PulseFrequency. The measurement resolution is controlled by the ClockSourceFrequency and RollValue.

Configure:

DIO#_EF_ENABLE: 0 = Disable, 1 = Enable
DIO#_EF_INDEX: 5
DIO#_EF_OPTIONS: Bits 0-2 specify which ClockSource to use. All other bits reserved (write 0).
DIO#_EF_CONFIG_A: Not used.
DIO#_EF_CONFIG_B: Not used.
DIO#_EF_CONFIG_C: Not used.
DIO#_EF_CONFIG_D: Not used.

http://labjack.com/print/book/export/html/1173

31 of 81 4/8/2014 1:27 PM

Update:

No update operations can be performed on Pulse Width In.

Read:

DIO#_EF_READ_A: Returns the measured high time in ClockSource ticks and saves the low time so that it can be read later. If a full period
has not yet been observed this value will be zero.
DIO#_EF_READ_B: Returns the measured low time in ClockSource ticks. This is the value saved when READ_A or READ_A_F was read.
DIO#_EF_READ_A_F: Returns the measured high time in seconds and saves the low time so that it can be read later. If a full period has not
yet been observed this value will be zero.
DIO#_EF_READ_B_F: Returns the measured low time in seconds. This is the value saved when READ_A or READ_A_F was read.

Reset:

DIO#_EF_READ_A_AND_RESET: Performs the same read as described above, but then also clears the register so that zero is returned
until another full period is measured.

DIO#_EF_READ_A_F_AND_RESET: Performs the same read as described above, but then also clears the register so that zero is returned
until another full period is measured.

Example:

First, configure a clock source to compare the signal against. (RollValue / Clock#Frequency) is the maximum measurable period. Be sure that
this is greater the maximum expected high or low time for you signal. Higher values for Clock#Frequency result in greater measurement
resolution.

DIO_EF_CLOCK0_DIVISOR = 8
DIO_EF_CLOCK0_ROLL_VALUE = 10000
DIO_EF_CLOCK0_ENABLE = 1

With those settings our maximum measurable period is 1 ms and resolution is 100 ns.

Now configure the DIO_EF on FIO0 as pwm measurement.

DIO0_EF_INDEX = 5 // Pulse width type index.
DIO0_EF_OPTIONS = 0 // Set to use clock source zero.
DIO0_EF_ENABLE = 1 // Enable the DIO_EF

After a full period beginning with a rising edge has transpired the below result registers can be read:

DIO#_EF_READ_A - The high time in clock source counts.
DIO#_EF_READ_B - The low time in clock source counts.
DIO#_EF_READ_A_F - This will return the high time in seconds.
DIO#_EF_READ_B_F - This will return the low time in seconds.

READ_A and READ_A_F both return the high time and save the low time that can be read from READ_B and READ_B_F. This ensures that
both readings occur at the same time.

13.1.7 Line-to-Line In

Capable DIO: FIO0, FIO1

Requires Clock Source: Yes

Index: 6

Line-to-Line In measures the time between an edge on one DIO line to an edge on another DIO line. The edges can be individually specified
as rising or falling. The maximum measurable period is controlled by the selected ClockSource's PulseFrequency. The resolution is controlled
by Clock#Frequency DIO_EF_CLOCK#_ROLL_VALUE.

MaximumMeasurablePeriod = 1 / PulseFrequency

Resolution = 1 / (PulseFrequency * DIO_EF_CLOCK#_ROLL_VALUE)

http://labjack.com/print/book/export/html/1173

32 of 81 4/8/2014 1:27 PM

Line-to-Line In operates in a one-shot mode. Once the specified combination of edges is observed the data is saved and measuring stops.
Another measurement can be started by resetting or performing the configuration procedure again.

Configure:

Configuring Line-to-Line In requires configuring two digital I/O lines as Line-to-Line type index 6. The first DIO configured should be the one
expecting the first edge. Any extended features on either DIO should be disabled before beginning configuration.
DIO#_EF_ENABLE: 0 = Disable, 1 = Enable
DIO#_EF_INDEX: 6
DIO#_EF_OPTIONS: Bits 0-2 specify which ClockSource to use. All other bits reserved (write 0).
DIO#_EF_CONFIG_A: 0 = falling edge. 1 = rising edge.
DIO#_EF_CONFIG_B: Not used.
DIO#_EF_CONFIG_C: Not used.
DIO#_EF_CONFIG_D: Not used.

Update:

No update operations can be performed on Line-to-Line In.

Read:

DIO#_EF_READ_A: Returns the measured time in ClockSource ticks. If the specified combination of edges has not yet been observed this
value will be zero.
DIO#_EF_READ_B: Not used by this feature.
DIO#_EF_READ_A_F: Returns the time between edges in seconds.

Reset:

DIO#_EF_READ_A_AND_RESET: Performs the same operation as DIO#_EF_READ_A, then clears the result and starts another
measurement.

13.1.8 High-Speed Counter

Capable DIO: CIO0, CIO1, CIO2, CIO3

Requires Clock Source: No

Index: 7

The T7 supports up to 4 high-speed counters that use hardware to achieve high count rates. These counters are shared with other resources
as follows:

CounterA (DIO16/CIO0): Used by EF Clock0 & Clock1.
CounterB (DIO17/CIO1): Used by EF Clock0 & Clock2.
CounterC (DIO18/CIO2): Always available.
CounterD (DIO19/CIO3): Used by stream mode.

Configure:

DIO#_EF_ENABLE: 0 = Disable, 1 = Enable
DIO#_EF_INDEX: 7
DIO#_EF_OPTIONS: Bits 0-2 specify which ClockSource to use. All other bits reserved (write 0).
DIO#_EF_CONFIG_A: When the ClockSource's count matches this value the line will transition from high to low.
DIO#_EF_CONFIG_B:When the ClockSource's count matches this value the line will transition from low to high.
DIO#_EF_CONFIG_B: Not used.
DIO#_EF_CONFIG_B: Not used.

Update:

No update operations can be performed with High-Speed Counter.

Read:

DIO#_EF_READ_A: Returns the current Count

http://labjack.com/print/book/export/html/1173

33 of 81 4/8/2014 1:27 PM

Reset:

DIO#_EF_READ_A_AND_RESET: Reads the current count then clears the counter. Note that there is a brief period of time between reading
and clearing during which edges can be missed. During normal operation this time period is 10-30us. If missed edges at this point can not be
tollerated then reset should not be used.

13.1.9 Interrupt Counter

Capable DIO: FIO0, FIO1, FIO2, FIO3, FIO6, and FIO7

Requires Clock Source: No

Index: 8

Interrupt Counter counts pulses on the associated IO line. This type of counter is not purely implemented in hardware. The firmware must
service each edge. This makes it quite a bit slower than the pure hardware high-speed counter (Index 7). Expect it to top out around TBD
~100kHz.

Configure:

DIO#_EF_ENABLE: 0 = Disable, 1 = Enable
DIO#_EF_INDEX: 8
DIO#_EF_OPTIONS: Not used.
DIO#_EF_CONFIG_A: Not used.
DIO#_EF_CONFIG_B: Not used.
DIO#_EF_CONFIG_B: Not used.
DIO#_EF_CONFIG_B: Not used.

Update:

No update operations can be performed on Interrupt Counter.

Read:

DIO#_EF_READ_A: Returns the current Count

Reset:

DIO#_EF_READ_A_AND_RESET: Reads the current count then clears the counter. Note that there is a brief period of time between reading
and clearing during which edges can be missed. During normal operation this time period is 10-30us. If missed edges at this point can not be
tollerated then reset should not be used.

13.1.10 Interrupt Counter with Debounce

Capable DIO: FIO0, FIO1, FIO2, FIO3, FIO6, and FIO7

Requires Clock Source: No

Index: 9

Interrupt Counter with Debounce will count when it receives the specified edge. After counting a timer is started. No received edges will be
counted until the timer expires. This type of counter is not purely implemented in hardware. The firmware must service each edge. This
makes it quite a bit slower than the pure hardware high-speed counter (Mode 7). Expect it to top out around TBD ~100kHz.

Configure:

DIO#_EF_ENABLE: 0 = Disable, 1 = Enable

http://labjack.com/print/book/export/html/1173

34 of 81 4/8/2014 1:27 PM

DIO#_EF_INDEX: 9
DIO#_EF_OPTIONS: Not used.
DIO#_EF_CONFIG_A: Debounce time in microseconds (µs).
DIO#_EF_CONFIG_B: bit 0: 1 = Count on Rising edges, 0 = falling edges, 2 = both edges.
DIO#_EF_CONFIG_B: Not used.
DIO#_EF_CONFIG_B: Not used.

Update:

No update operations can be performed on Interrupt Counter with Debounce.

Read:

DIO#_EF_READ_A: Returns the current Count

Reset:

DIO#_EF_READ_A_AND_RESET: Reads the current count then clears the counter. Note that there is a brief period of time between reading
and clearing during which edges can be missed. During normal operation this time period is 10-30us. If missed edges at this point can not be
tollerated then reset should not be used.

13.1.11 Quadrature In

Capable DIO: FIO0, FIO1, FIO2, FIO3, FIO6, and FIO7

Requires Clock Source: No

Index: 10

Quadrature input uses two DIOs to measure a quadrature signal. Quadrature is a directional count often used in rotary encoders. The T7
uses 4x quadrature decoding, meaning that every edge observed (rising & falling on both phases) will increment or decrement the count. This
feature can be used if the expected frequency does not exceed the device-wide edge rate limitation.

Quadrature is prone to error if the edge rate is exceeded. This is particularly likely during direction change where the time between edges can
be very small. Errors can occur when two edges come in too quickly for the device to process can result in missed counts or missed change
in direction. These errors will be recorded and the quantity encountered can be read. If three edges come in too quickly an undetectable error
can occur.

Configure:

Configuring the T7 for quadrature requires configuring two DIO. The first configured will be considered the A line.

DIO#_EF_ENABLE: 0 = Disable, 1 = Enable
DIO#_EF_INDEX: 10
DIO#_EF_OPTIONS: Not used.
DIO#_EF_CONFIG_A: Not used.
DIO#_EF_CONFIG_B: Not used.
DIO#_EF_CONFIG_C: Not used.
DIO#_EF_CONFIG_D: Not used.

Update:

No update operations can be performed with Quadrature In.

Read:

DIO#_EF_READ_A - Returns the current count.
DIO#_EF_READ_B – Returns the number of detected errors.

Reset:

DIO#_EF_READ_A_AND_RESET – Performs the same operation as DIO#_EF_READ_A, then sets the count to zero.

http://labjack.com/print/book/export/html/1173

35 of 81 4/8/2014 1:27 PM

Example:

Configure FIO2 & FIO3 as quadrature inputs:

DIO2_EF_INDEX = 10
DIO2_EF_ENABLE = 1 //A phase on FIO2
DIO3_EF_INDEX = 10
DIO3_EF_ENABLE = 1 //B phase on FIO3

Edges on the two lines will now be decoded and the count will be incremented or decremented according to the edge sequence.

The current count can be read from:
DIO2_EF_READ_A or DIO2_EF_READ_A_AND_RESET

13.1.12 Interrupt Frequency In

Capable DIO: FIO0, FIO1, FIO2, FIO3, FIO6, FIO7

Requires Clock Source: Yes

Index: 3 (positive edges) or 4 (negative edges)

Interrupt Frequency In will measure the frequency of a signal on the associated DIO line. To measure the frequency the LabJack will measure
the duration of one or more periods. There are several option available to control the way the LabJack does this. The number of period to be
averaged, the edge direction to trigger on and whether to measure continuously or in a one-shot mode can all be specified.

The clock source for this feature is simply half the core frequency:

ClockFrequency = CoreFrequency / 2 //Typically 80M/2 = 40 MHz

Period (s) = DIO#_EF_READ_A / ClockFrequency

Frequency (Hz) = ClockFrequency / DIO#_EF_READ_A

The maximum measurable time is 107 s. The number of periods to be averaged times the maximum expected period must be less than 107 s
or the result will overflow: 107 < (NumToAverage * MaxPeriod)

By default Interrupt Frequency In will measure the frequency once and return that same result until it is reconfigured or reset. At which point a
second measurement will be made. The other option is continuous mode. In continuous mode the frequency is constantly being measured
and read returns the most recent result. Running continuous puts a greater load on the processor.

Configure:

DIO#_EF_ENABLE: 0 = Disable, 1 = Enable
DIO#_EF_INDEX: 11
DIO#_EF_OPTIONS: Not Used.
DIO#_EF_CONFIG_A: bit 1: Edge select; 1 = rising, 0 = falling. Bit 2: 1=continuous, 0=OneShot.
DIO#_EF_CONFIG_B: Number of periods to be measured.
DIO#_EF_CONFIG_C: Not used.
DIO#_EF_CONFIG_D: Not used.

Update:

No update operations can be performed with Interrupt Frequency In.

Read:

DIO#_EF_READ_A: Returns the measured time in ticks. This represents the total time elapsed during Value_A averaged periods. Until the
specified number of periods has been observed this value will be zero.
DIO#_EF_READ_B: Not used by this feature.
DIO#_EF_READ_A_F: Returns calculated frequency. Takes into account the number of periods to be averaged and the core clock speed.

Reset:

DIO#_EF_READ_A_AND_RESET: Returns the same data as DIO#_EF_READ_A and then clears the result so that zero is returned by
subsequent reads until another full period is measured.
DIO#_EF_READ_A_AND_RESET_F: Returns the same data as DIO#_EF_READ_A_F and then clears the result so that zero is returned by
subsequent reads until another full period is measured.

http://labjack.com/print/book/export/html/1173

36 of 81 4/8/2014 1:27 PM

Example:

13.2 I2C

I2C Configuration Utility

A helpful utility to help visualize the T7's I2C functionality and experiment with various configurations can be found here.

Example I2C Circuit

http://labjack.com/print/book/export/html/1173

37 of 81 4/8/2014 1:27 PM

13.2.1 Configuration Registers

I2C Registers

Name Start Address Type Access Default

I2C_SDA_DIONUM 5100 UINT16 R/W 0

I2C_SCL_DIONUM 5101 UINT16 R/W 0

I2C_SPEED_THROTTLE 5102 UINT16 R/W 0

I2C_OPTIONS 5103 UINT16 R/W 0

I2C_SLAVE_ADDRESS 5104 UINT16 R/W 0

I2C_NUM_BYTES_TX 5108 UINT16 R/W 0

I2C_NUM_BYTES_RX 5109 UINT16 R/W 0

I2C_WRITE_DATA 5120 BYTE R/W 0

I2C_READ_DATA 5160 BYTE R/W 0

I2C_GO 5110 UINT16 R/W 0

I2C_ACKS 5114 UINT32 R/W 0

I2C_SDA_DIONUM

The number of the DIO line that is to used as the I2C data line. Ex: Writing 0 will force FIO0 to become the I2C-SDA line.

I2C_SCL_DIONUM

The number of the DIO line that is to used as the I2C clock line. Ex: Writing 1 will force FIO1 to become the I2C-SCL line.

I2C_SPEED_THROTTLE

This value controls the I2C clock frequency. Pass 0-65535. Default=0 corresponds to 65536 internally which results in ~450 kHz. 1 results in ~40 Hz.

I2C_OPTIONS

Advanced. Controls details of the I2C protocol to improve device compatibility.

I2C_SLAVE_ADDRESS

The 7-bit address of the slave device. Value is shifted over automatically to allow room for the I2C R/W bit.

I2C_NUM_BYTES_TX

The number of data bytes to transmit.

I2C_NUM_BYTES_RX

The number of data bytes to read.

I2C_WRITE_DATA

Data that will be written to the I2C bus.

I2C_READ_DATA

Data that has been read from the I2C bus.

I2C_GO

Writing to this register will instruct the LabJack to perform an I2C transaction.

I2C_ACKS

An array of bits used to observe ACKs from the slave device.

13.2.2 I2C Simulation Tool

Click HERE for a larger version of this tool

This javascript application is designed to help give an understanding of the LabJack's I2C functionality. Each I2C register that effects the
output is shown below. The two registers that are omitted are "I2C_GO" and "I2C_ACKS".

I2C_GO" Executes the configured I2C request, and "I2C_ACKS" reads the received ack's & nack's packed into a binary array.

Test out various I2C configuration settings and view the expected result.

I2C Op:

SDA/FIO1:

SCL/FIO0:

http://labjack.com/print/book/export/html/1173

38 of 81 4/8/2014 1:27 PM

13.3 SPI

SPI ...

SPI Registers

Name Start Address Type Access Default

SPI_CS_DIONUM 5000 UINT16 R/W 0

SPI_CLK_DIONUM 5001 UINT16 R/W 0

SPI_MISO_DIONUM 5002 UINT16 R/W 0

SPI_MOSI_DIONUM 5003 UINT16 R/W 0

SPI_MODE 5004 UINT16 R/W 0

SPI_SPEED_THROTTLE 5005 UINT16 R/W 0

SPI_OPTIONS 5006 UINT16 R/W 0

SPI_NUM_BYTES 5009 UINT16 R/W 0

SPI_DATA_WRITE 5010 BYTE W 0

SPI_DATA_READ 5050 BYTE R 0

SPI_CS_DIONUM

The DIO line for Chip-Select.

SPI_CLK_DIONUM

The DIO line for Clock.

SPI_MISO_DIONUM

The DIO line for Master-In-Slave-Out.

SPI_MOSI_DIONUM

The DIO line for Master-Out-Slave-In.

SPI_MODE

Enter I2C Configuration Settings Below

I2C_SDA_DIONUM:

I2C_SCL_DIONUM:

I2C_SPEED_THROTTLE:

I2C_OPTIONS:

Enable Reset-On-Start:

Enable No-Stop on Restart:

Enable Clock Stretching:

Result:

I2C_SLAVE_ADDRESS:

I2C_NUM_BYTES_TX:

I2C_NUM_BYTES_RX:

I2C_WRITE_DATA:

I2C_READ_DATA:

Table Of Contents:

A: Indicates an I2C-Ack bit writing a byte of data
C: Indicates an I2C-Clock stretch occuring to slow down transmission
N: Indicates an I2C-Nack bit writing a byte of data
P: Indicates an I2C-Stop Condition
R: Indicates an I2C-Read bit appearing after the slave address is sent
RESET: Indicates an I2C-Reset Condition
S: Indicates an I2C-Start Condition
W: Indicates an I2C-Write bit appearing after the slave address is sent

http://labjack.com/print/book/export/html/1173

39 of 81 4/8/2014 1:27 PM

The SPI mode controls the clock idle state and which edge clocks the data. Bit 1 is CPOL and Bit 0 is CPHA, so CPOL/CPHA for different decimal values: 0 =
0/0 = b00, 1 = 0/1 = b01, 2 = 1/0 = b10, 3 = 1/1 = b11.

SPI_SPEED_THROTTLE

This value controls the SPI clock frequency. Pass 0-65535. Default=0 corresponds to 65536 internally which results in ~1 MHz. 1 results in ~100 Hz.

SPI_OPTIONS

Bit 0 is Auto-CS-Disable.

SPI_NUM_BYTES

The number of bytes to transfer.

SPI_DATA_WRITE

Write data here. Doing so causes the communication to happen.

SPI_DATA_READ

Read data here.

13.4 SBUS

SBUS is a serial protocol used with SHT1X and SHT7x sensors from Sensirion. It is similar to I2C, but not the same. The EI-1050 uses the
SHT11 sensor. Other available sensors are the SHT10, SHT15, SHT71, and SHT75.

SBUS Registers

Name Start Address Type Access Default

SBUS#(0:22)_TEMP 30100 FLOAT32 R

SBUS#(0:22)_RH 30150 FLOAT32 R

SBUS#(0:22)_DATA_DIONUM 30200 UINT16 R/W 0

SBUS#(0:22)_CLOCK_DIONUM 30225 UINT16 R/W 1

SBUS_ALL_DATA_DIONUM 30275 UINT16 R/W 0

SBUS_ALL_CLOCK_DIONUM 30276 UINT16 R/W 1

SBUS_ALL_POWER_DIONUM 30277 UINT16 R/W 2

SBUS#(0:22)_TEMP

Reads temperature in degrees Kelvin from an SBUS sensor (EI-1050/SHT1x/SHT7x). # is the DIO line for the EI-1050 enable. If # is the same as the value
specified for data or clock line, there will be no control of an enable line.

Names Addresses

SBUS0_TEMP, SBUS1_TEMP, SBUS2_TEMP, Show

All

30100, 30102, 30104, Show All

SBUS#(0:22)_RH

Reads humidity in % from an SBUS sensor (EI-1050/SHT1x/SHT7x). # is the DIO line for the EI-1050 enable. If # is the same as the value specified for data or
clock line, there will be no control of an enable line.

Names Addresses

SBUS0_RH, SBUS1_RH, SBUS2_RH, Show All 30150, 30152, 30154, Show All

SBUS#(0:22)_DATA_DIONUM

This is the DIO# that the sensor's data line is connected to. Default = FIO0

Names Addresses

SBUS0_DATA_DIONUM, SBUS1_DATA_DIONUM,

SBUS2_DATA_DIONUM, Show All

30200, 30201, 30202, Show All

SBUS#(0:22)_CLOCK_DIONUM

This is the DIO# that the sensor's clock line is connected to. Default = FIO1

Names Addresses

SBUS0_CLOCK_DIONUM, SBUS1_CLOCK_DIONUM,

SBUS2_CLOCK_DIONUM, Show All

30225, 30226, 30227, Show All

http://labjack.com/print/book/export/html/1173

40 of 81 4/8/2014 1:27 PM

SBUS_ALL_DATA_DIONUM

A write to this global parameter sets all SBUS data line registers to the same value. A read will return the correct setting if all channels are set the same, but
otherwise will return 0xFF.

SBUS_ALL_CLOCK_DIONUM

A write to this global parameter sets all SBUS clock line registers to the same value. A read will return the correct setting if all channels are set the same, but
otherwise will return 0xFF.

SBUS_ALL_POWER_DIONUM

Sets the power line. This DIO is set to output-high upon any read of SBUS#_TEMP or SBUS#_RH. Default = FIO2. An FIO line can power up to 4 sensors while
an EIO/CIO/MIO line or DAC line can power up to 20 sensors. Set to 9999 to disable. To use multiple power lines, use a DAC line for power, or otherwise control
power yourself, set this to 9999 and then control power using writes to normal registers such as FIO5, EIO0, or DAC0.

$(document).ready(function() { $('.collapsed-content-expander').closest('.content').find('.sometimes-shown').hide(); $('.collapsed-content-
expander').click(function(e) { $(e.target).closest('.content').find('.collapsed-content-expander').fadeOut(function () {
$(e.target).closest('.content').find('.sometimes-shown').fadeIn(); }); return false; }); });

Examples:

EI-1050 probes using default configuration:

The EI-1050 has an enable line that allows multiple probes to use the same pair of data/clock lines. In this example we connect the 4 basic
wires from each probe to the lines specified by the default config:

GND Ground (black)
FIO0 Data (green)
FIO1 Clock (white)
FIO2 Power (red)

Since power is provided by FIO2, and FIO lines can only power 4 EI-1050 probes, that is the limitation on number of probes using the default
config. We can now connect the enable line from each probe to any DIO we want. Lets use:

FIO3 Enable ProbeA (brown)
EIO0/DIO8 Enable ProbeB (brown)
EIO1/DIO9 Enable ProbeC (brown)
EIO2/DIO10 Enable ProbeD (brown)

You can now read from SBUS#_TEMP and SBUS#_RH for each probe without writing any config values. In LJLogM, for example, just put
the desired register name in any row. A read from SBUS3_TEMP will return the temperature from ProbeA. A read from SBUS9_RH will
return the humidity from ProbeC.

Note that when using multiple probes this way, you might need to read one value from each probe before they will work. By default digital I/O
are set to input, which has a 100k pull-up, so all 4 probes in this example will be enabled at the same time, which will likely result in a read
error. At the end of a read the enable line is set to output-low, so once you do an initial read from each, they will all be disabled and on
further reads only one will be enabled at a time.

EI-1050 probes using enable with custom configuration:

Say you connect 2 probes as follows:

GND Ground (black)
EIO0/DIO8 Data (green)
EIO1/DIO9 Clock (white)
EIO2/DIO10 Power (red)

EIO3/DIO11 Enable ProbeA (brown)
EIO4/DIO12 Enable ProbeB (brown)

Write the following registers to configure and disable the probes:

SBUS_ALL_DATA_DIONUM = 8
SBUS_ALL_CLOCK_DIONUM = 9
SBUS_ALL_POWER_DIONUM = 10
EIO3 = 0
EIO4 = 0

You can now read from SBUS11_TEMP/SBUS11_RH for ProbeA values or SBUS12_TEMP/SBUS12_RH for ProbeB values.

EI-1050, SHT1x, or SHT7x, using individual data/clock lines and DAC0 for power:

Say you connect an EI-1050 and SHT71 as follows:

http://labjack.com/print/book/export/html/1173

41 of 81 4/8/2014 1:27 PM

GND Ground (black)
DAC0 Power (red)

FIO0 Data for EI-1050 (green)
FIO1 Clock for EI-1050 (white)
DAC0 Enable EI-1050 (brown)
FIO2 Data for SHT71
FIO3 Clock for SHT71

Since the EI-1050 is tied to power, it will always be enabled. We can do that because we have assigned it dedicated DIO for data and clock.
The SHT71 does not have an enable. Note that the SHT7x datasheet shows an added 10k pull-up resistor from Data to Power. The
LabJack has an internal 100k pull-up that usually works, but some applications might need the stronger 10k pull-up and perhaps even a
capacitor from Clock to GND near the sensor pins.

Write the following registers to configure and power the probes:

SBUS0_DATA_DIONUM = 0
SBUS0_CLOCK_DIONUM = 1
SBUS3_DATA_DIONUM = 2
SBUS3_CLOCK_DIONUM = 3
SBUS_ALL_POWER_DIONUM = 9999
DAC0 = 3.3

You can now read from SBUS0_TEMP/SBUS0_RH for the EI-1050 values or SBUS3_TEMP/SBUS3_RH for the SHT71 values.

Note that the "#" in the register names above can be about anything you want. Say for the SHT71 you instead did:

SBUS7_DATA_DIONUM = 2
SBUS7_CLOCK_DIONUM = 3

Now if you read SBUS7_TEMP/SBUS7_RH, the LabJack will use FIO2/3 to talk to the sensor. A possible problem, though, is that the
LabJack will also control FIO7 as an enable. It will set FIO7 to output-high, talk to the sensor, and then set FIO7 to output-low. The way to
prevent control of an enable line is to use a "#" that is the same as the data or clock line.

13.5 1-Wire

This document assumes that the reader has a basic understanding of the 1-wire protocol.

1-Wire is a serial protocol that uses only one data line. Multiple devices can be connected to a single 1-Wire bus and are differentiated using
a unique 64-bit number referred to as ROM.

Hardware:

Devices on the 1-wire bus need to be connected to GND, Vs and the data line DQ. DQ also needs a pullup resister of 2.2-4.7 kΩ to Vs.

FIO lines can not be used for 1-Wire. They have too much impedance which prevent the signal from reaching logic thresholds.

The T7 supports a DPU (dynamic pull up). A dynamic pull up uses an external circuit such as a transistor to provide extra power to the DQ
line at proper times. This can be helpful if the line is large or you are using parasitic power.

Configuration:

ONEWIRE_DQ_DIONUM: This is the DIO line to use for the data line, DQ.
ONEWIRE_DPU_DIONUM: This is the DIO line to use for the dynamic pullup control.
ONEWIRE_OPTIONS: A bit-mask for controlling operation details.
bit 0: Reserved, write 0.
bit 1: Reserved, write 0.
bit 2: DPU Enable. Write 1 to enable the dynamic pullup.
bit 3: DPU Polarity. Write 1 to set the active state as high, 0 to set the active state as low.
ONEWIRE_FUNCTION: This controls how the ROM address of 1-wire devices will be used.
ONEWIRE_NUM_BYTES_WRITE: The number of bytes to transmit to the device. Has no affect when the ROM function is set to Search or
Read.
ONEWIRE_NUM_BYTES_READ:The number of bytes to read from the device. Has no affect when the ROM function is set to Search or
Read.
ONEWIRE_ROM_MATCH_H: The upper 32-bits of the ROM of the device to attempt to connect to when using the Match ROM function.
ONEWIRE_ROM_MATCH_L: The lower 32-bits of the ROM of the device to attempt to connect to when using the Match ROM function.
ONEWIRE_PATH_H: Upper 32-bits of the search path.

http://labjack.com/print/book/export/html/1173

42 of 81 4/8/2014 1:27 PM

ONEWIRE_PATH_L: Lower 32-bits of the search path.

ROM Functions:

0xF0: Search – This function will read the ROM of one device on the bus. The ROM found is placed in ONEWIRE_SEARCH_RESULT and if
other devices were detected the branch bits will be set in ONEWIRE_ROM_BRANCHS_FOUND.
0xCC: Skip – This function will skip the ROM addressing step. For this to work properly only one device may be connected to the bus.
0x55: Match – When using this function data will be sent to and read from a device whose ROM matches the ROM loaded into the
ONEWIRE_ROM_MATCH registers.
0x33: Read – Reads the ROM of the connected device. For this to work properly only one device may be connected to the bus.

Sending data:

When using the Match or Skip Rom functions data can be sent to the device. To do so, set the number of bytes to send by writing to
ONEWIRE_NUM_BYTES_READ and write the data to ONEWIRE_DATA_READ.

Reading data:

When using the Match or Skip Rom functions data can be read from the device. To do so, set the number of bytes to send by writing to
ONEWIRE_NUM_BYTES_WRITE and write the data to ONEWIRE_DATA_WRITE.

Example:

Configure the T7's 1-Wire interface, and obtain a temperature reading from a DS18B22.

Configuration:
Write the common configuration that will not change; the DQ line, DPU, and options. For this example we will use EIO6 (14) as DQ, and the
DPU will be left disabled.

ONEWIRE_DQ_DIONUM = 8
ONEWIRE_DPU_DIONUM = 0
ONEWIRE_OPTIONS = 0

Read ROM:
The 64-bit ROM can be read from the device using the Read ROM function if it is the only device on the bus.

ONEWIRE_FUNCTION = 0x33
ONEWIRE_GO = 1

The T7 will read the ROM from the connected device and place it in. This test resulted in ROM code 0x1D000005908D4728

Search for ROM:
If there is more than one device on the bus the search function can be used to find the ROM of one of the devices. Note that this method
does not provide any information about which device has the ROM discovered.

ONEWIRE_PATH = 0
ONEWIRE_FUNCTION = 0xF0
ONEWIRE_GO = 1

The LabJack will perform the 1-Wire search function. If a ROM is found it will be placed in ONEWIRE_ROM_SEARCH_RESULT and any
branches detected will be indicated in ONEWIRE_BRANCES. The ONEWIRE_PATH field can be used to direct the LabJack to take a
different path in subsequent searches.

Results:
ROM - 0x1D000005908D4728
Branches - 0x00000000000002
Now repeat the search with path set to 2.

Results:
ROM - 0xFF00000024AD2C22
Branches - 0x00000000000002

The search can be repeated to find the ROM codes of all devices on the bus.

Write start conversion command to the device:
Do instruct the sensor to start a reading we need to match the device's ROM and send one data byte. The data byte contains the instruction
0xBE.

http://labjack.com/print/book/export/html/1173

43 of 81 4/8/2014 1:27 PM

ONEWIRE_FUNCTION = 0x55
ONEWIRE_ROM = 0x1D000005908D4728
ONEWIRE_NUM_BYTES_WRITE = 1
ONEWIRE_DATA_WRITE = [0x44]
ONEWIRE_GO = 1

The sensor will now start a conversion. Depending on the sensor and it's settings up to 500 ms may be needed to complete the conversion.

Read conversion result from the device:
After a conversion has been complete we can begin the reading process. This time we need to write the read instruction which is 0x44 and
then read 9 bytes of data.

ONEWIRE_FUNCTION = 0x55
ONEWIRE_ROM = 0x1D000005908D4728
ONEWIRE_NUM_BYTES_WRITE = 1
ONEWIRE_NUM_BYTES_READ = 9
ONEWIRE_DATA_WRITE = [0xBE]
ONEWIRE_GO = 1

We can now read the 9 bytes from ONEWIRE_DATA_READ:

0x6A, 0x0A, 0x00, 0x00, 0x24, 0xAD, 0x2C, 0x22, 0x00

The 9 bytes contain the binary reading, a checksum, and some other information about the device. The devices used was set to 12-bit
resolution so the conversion is 0.0625ºC/bit. The binary result is data[0] + data[1]*256. The binary temperature reading is 1*256 + 0x6A =
256 + 106 = 362. To convert that to ºC multiply by 0.0625. So the final temperature is 22.6 ºC.

1-Wire Registers

Name Start Address Type Access Default

ONEWIRE_DQ_DIONUM 5300 UINT16 R/W 0

ONEWIRE_DPU_DIONUM 5301 UINT16 R/W 0

ONEWIRE_OPTIONS 5302 UINT16 R/W 0

ONEWIRE_FUNCTION 5307 UINT16 R/W 0

ONEWIRE_NUM_BYTES_TX 5308 UINT16 R/W 0

ONEWIRE_NUM_BYTES_RX 5309 UINT16 R/W 0

ONEWIRE_GO 5310 UINT16 W 0

ONEWIRE_ROM_MATCH_H 5320 UINT32 R/W 0

ONEWIRE_ROM_MATCH_L 5322 UINT32 R/W 0

ONEWIRE_ROM_BRANCHS_FOUND_H 5332 UINT32 R 0

ONEWIRE_ROM_BRANCHS_FOUND_L 5334 UINT32 R 0

ONEWIRE_SEARCH_RESULT_H 5328 UINT32 R 0

ONEWIRE_SEARCH_RESULT_L 5330 UINT32 R 0

ONEWIRE_PATH_H 5324 UINT32 R/W 0

ONEWIRE_PATH_L 5326 UINT32 R/W 0

ONEWIRE_DATA_TX 5340 BYTE R/W 0

ONEWIRE_DATA_RX 5370 BYTE R/W 0

ONEWIRE_DQ_DIONUM

The data-line DIO number.

ONEWIRE_DPU_DIONUM

The dynamic pullup control DIO number.

ONEWIRE_OPTIONS

Controls advanced features.

ONEWIRE_FUNCTION

Set the ROM function to use, such as match, skip, search.

ONEWIRE_NUM_BYTES_TX

Number of data bytes to be send.

ONEWIRE_NUM_BYTES_RX

http://labjack.com/print/book/export/html/1173

44 of 81 4/8/2014 1:27 PM

Number of data bytes to be received.

ONEWIRE_GO

Instructs the T7 to perform the configured 1-wire transaction.

ONEWIRE_ROM_MATCH_H

Upper 32-bits of the ROM to match.

ONEWIRE_ROM_MATCH_L

Lower 32-bits of the ROM to match.

ONEWIRE_ROM_BRANCHS_FOUND_H

Upper 32-bits of the branches detected during a search.

ONEWIRE_ROM_BRANCHS_FOUND_L

Lower 32-bits of the branches detected during a search.

ONEWIRE_SEARCH_RESULT_H

Upper 32-bits of the search result.

ONEWIRE_SEARCH_RESULT_L

Lower 32-bites of the search result.

ONEWIRE_PATH_H

Upper 32-bits of the path to take during a search.

ONEWIRE_PATH_L

Lower 32-bits of the path to take during a search.

ONEWIRE_DATA_TX

Data to be transmitted over the 1-wire bus.

ONEWIRE_DATA_RX

Data received over the 1-wire bus.

13.6 Asynchronous Serial

As of firmware 1.0075 the T7 has support for Asynchronous Serial.

Asynchronous Serial

Name Start Address Type Access Default

ASYNCH_ENABLE 5400 UINT16 R/W 0

ASYNCH_BAUD 5420 UINT32 R/W 0

ASYNCH_RX_DIONUM 5405 UINT16 R/W 0

ASYNCH_TX_DIONUM 5410 UINT16 R/W 0

ASYNCH_NUM_BITS 5415 UINT16 R/W 0

ASYNCH_RX_BUFFER_SIZE_BYTES 5430 UINT16 R/W 0

ASYNCH_NUM_BYTES_RX 5435 UINT16 R 0

ASYNCH_NUM_BYTES_TX 5440 UINT16 R/W 0

ASYNCH_TX_GO 5450 UINT16 W 0

ASYNCH_DATA_TX 5490 BYTE R/W 0

ASYNCH_DATA_RX 5495 BYTE R/W 0

ASYNCH_ENABLE

1 = Turn on Asynch. Configures timing hardware, DIO lines and allocates the receiving buffer.

ASYNCH_BAUD

The symbol rate that will be used for communcation.

ASYNCH_RX_DIONUM

The DIO line that will receive data. (RX)

ASYNCH_TX_DIONUM

The DIO line that will transmit data. (TX)

ASYNCH_NUM_BITS

The number of data bits per frame.

ASYNCH_RX_BUFFER_SIZE_BYTES

Number of bytes to use for the receiving buffer. Max is 2048.

ASYNCH_NUM_BYTES_RX

http://labjack.com/print/book/export/html/1173

45 of 81 4/8/2014 1:27 PM

The number of data bytes that have been received.

ASYNCH_NUM_BYTES_TX

The number of bytes to be transmitted after writing to GO.

ASYNCH_TX_GO

Write a 1 to this register to initiate a transmission.

ASYNCH_DATA_TX

Write data to be transmitted here.

ASYNCH_DATA_RX

Read received data from here.

14.0 AIN

Analog Inputs: 14

Voltage Ranges: ±10V, ±1V, ±0.1V, and ±0.01V

Analog Input Registers

Name Start Address Type Access Default

AIN#(0:13) 0 FLOAT32 R

AIN#(0:13)_RANGE 40000 FLOAT32 R/W 0

AIN#(0:13)_NEGATIVE_CH 41000 UINT16 R/W 199

AIN#(0:13)_RESOLUTION_INDEX 41500 UINT16 R/W 0

AIN#(0:13)_SETTLING_US 42000 FLOAT32 R/W 0

AIN_ALL_RANGE 43900 FLOAT32 R/W 0

AIN_ALL_NEGATIVE_CH 43902 UINT16 R/W 199

AIN_ALL_RESOLUTION_INDEX 43903 UINT16 R/W 0

AIN_ALL_SETTLING_US 43904 FLOAT32 R/W 0

AIN#(0:13)

Returns the voltage of the specified analog input.

Names Addresses

AIN0, AIN1, AIN2, Show All 0, 2, 4, Show All

AIN#(0:13)_RANGE

The range/span of each analog input. If all channels are the same, this reads the correct value, but otherwise this reads -9999.0.

Names Addresses

AIN0_RANGE, AIN1_RANGE, AIN2_RANGE, Show

All

40000, 40002, 40004, Show All

AIN#(0:13)_NEGATIVE_CH

Specifies the negative channel to be used for each positive channel. 199=Default=> Single-Ended. If all channels are the same, this reads the correct value, but
otherwise this reads 0xFFFF.

Names Addresses

AIN0_NEGATIVE_CH, AIN1_NEGATIVE_CH,

AIN2_NEGATIVE_CH, Show All

41000, 41001, 41002, Show All

http://labjack.com/print/book/export/html/1173

46 of 81 4/8/2014 1:27 PM

AIN#(0:13)_RESOLUTION_INDEX

The resolution index for each analog input. A larger resolution index generally results in lower noise and longer sample times. If all channels are the same, this
reads the correct value, but otherwise this reads 0xFFFF.

Names Addresses

AIN0_RESOLUTION_INDEX,

AIN1_RESOLUTION_INDEX,

AIN2_RESOLUTION_INDEX, Show All

41500, 41501, 41502, Show All

AIN#(0:13)_SETTLING_US

Settling time for command-response readings. If all channels are the same, this reads the correct value, but otherwise this reads -9999.0.

Names Addresses

AIN0_SETTLING_US, AIN1_SETTLING_US,

AIN2_SETTLING_US, Show All

42000, 42002, 42004, Show All

AIN_ALL_RANGE

A write to this global parameter affects all AIN. A read will return the correct setting if all channels are set the same, but otherwise will return -9999.

AIN_ALL_NEGATIVE_CH

A write to this global parameter affects all AIN. A read will return the correct setting if all channels are set the same, but otherwise will return 0xFFFF.

AIN_ALL_RESOLUTION_INDEX

A write to this global parameter affects all AIN. A read will return the correct setting if all channels are set the same, but otherwise will return 0xFFFF.

AIN_ALL_SETTLING_US

A write to this global parameter affects all AIN. A read will return the correct setting if all channels are set the same, but otherwise will return -9999.

$(document).ready(function() { $('.collapsed-content-expander').closest('.content').find('.sometimes-shown').hide(); $('.collapsed-content-
expander').click(function(e) { $(e.target).closest('.content').find('.collapsed-content-expander').fadeOut(function () {
$(e.target).closest('.content').find('.sometimes-shown').fadeIn(); }); return false; }); });

Some Examples

Analog Input Example: To read a voltage connected to AIN2, perform a read of AIN2 (or 4), and the result would be in the form of a floating
point number, like 8.82332V.

Range Example: It is known that the voltage source connected to AIN1 will be 0 to 0.7V, so write 1.0 (or anything >0.1 and <=1.0) to
AIN1_RANGE (40002), and the device will use the ±1V range.

Differential Analog Input Example: To do a differential reading on AIN2, you need to set AIN3 as its negative channel so that the
measurement is AIN2-AIN3, rather then the default AIN2-GND (single-ended). Write a value of 3 to AIN2_NEGATIVE_CH (41002). To set it
back to single-ended write a value of 199.

Resolution Index Example: Change the AIN1 resolution index to 5 by writing a value of 5 to AIN1_RESOLUTION_INDEX (41501).

Settling Example: Change the settling time of AIN3 to 500uS by writing a value of 500 to AIN3_SETTLING_US (42006), although we
recommend a value of 0 which corresponds to automatic settling.

Extra Details

The analog inputs are not artificially pulled to 0.0 volts, as that would reduce the input impedance, so readings obtained from floating
channels will generally not be 0.0 volts. The readings from floating channels depend on adjacent channels and sample rate and have little
meaning. See related floating input application note.

Notice that the addresses for AIN#, AIN#_RANGE, and AIN#_SETTLING_US increment in steps of 2. That is because they are FLOAT32
and thus each needs 2 16-bit registers. AIN#_NEGATIVE_CH and AIN#_RESOLUTION_INDEX are UNIT16 and thus just use 1 16-bit
register each, so their addresses step in increments of 1.

The AIN#(0..13)_RANGE parameter is actually controlling the gain of the internal instrumentation amplifier. The in-amp supports gains of x1,
x10, x100, and x1000. If you set range=10, you get gain=x1, and the analog input range is ±10 volts. If you set range=1, you get gain=x10,
and the analog input range is ±1 volts. Note that the device knows what the internal gain is set to and adjusts the return values to give the
voltage at the input terminals, so if you connect a 0.8 volt signal to the input terminals, it will be amplified to 8.0 volts before being digitized,
but the reading you get back will be 0.8 volts. Write range=10 to get a range of ±10V (default), range=1 to get a range of ±1V, range=0.1 to
get a range of ±0.1V, or range=0.01 to get a range of ±0.01V. If you write a value in between the valid ranges, the larger range will be used.

The AIN#(0:254)_NEGATIVE_CH parameter pertains to differential readings. On the T7, differential channels are adjacent even/odd pairs
only, such as AIN2-AIN3. Thus the positive channel must be even and the negative channel must be +1. Only an even channel can have an
associated negative channel, so you will never write to odd channels of this register (e.g. never write to AIN3_NEGATIVE_CH/41003).
 Channel numbers in the extended range (above AIN15), are connected to AIN0-AIN13 and those dictate the even/odd rule, not the extended
channel numbers (see the Mux80 datasheet).

The AIN#(0:254)_RESOLUTION_INDEX parameter affects the ADC. A higher Resolution_Index results in lower noise and thus higher
effective & noise-free resolution, with the tradeoff of longer sample times. The value passed for Resolution_Index is from 0-8, where 0

http://labjack.com/print/book/export/html/1173

47 of 81 4/8/2014 1:27 PM

corresponds to default, 1 is roughly 16-bit resolution (RMS or effective), and 8 is roughly 19-bit resolution. The T7-Pro has additional
Resolution_Index settings 9-12 that use the alternate high-resolution converter (24-bit sigma-delta) and correspond to roughly 19-bit to 22-bit
resolution. For command-response readings, the default value of 0 corresponds to Resolution_Index=8 on a T7 and Resolution_Index=9 on
a T7-Pro. For stream readings the default of 0 corresponds to Resolution_Index=1.

The AIN#(0:254)_SETTLING_US parameter is the time from a step change in the input signal to when the signal is sampled by the ADC,
measured in microseconds. A step change in this case is caused when the internal multiplexers change from one channel to another. In
general, more settling time is required as gain and resolution are increased. The default “auto” settling time ensures that the device meets
specifications at any gain and resolution for source impedance up to at least 1000 ohms. This parameter applies to command/response
mode and AIN EF. Stream mode has its own settling parameter. The timings in Electrical Characteristics are measured with “auto” settling.

14.1 AIN Extended Features

The AIN-EF system is considered in beta status.

Analog extended features (AIN-EF) are used for advanced operations involving analog inputs. Possible features:

Linear Scaling: Apply a simple slope and offset.
Thermocouples: Perform the math to handle cold junction compensation (CJC) and voltage to temperature conversion.
RMS: Acquire a burst of samples and calculate RMS.
60Hz Power: Acquire a burst of samples from 2 channels with voltage and current sensors, scale as neccessary, and then multiply and
integrate to calculate power & energy. This is a future possibility, and not implemented at this time.

Configuration:

Before an AIN_EF can be used a few settings need to be written. The desired operation is selected by writing the associated index number to
AIN#(0:13)_EF_INDEX. Depending on the selected index several configuration registers can be written. The details of the configuration
registers can be found in the associated index section.

Analog input settings such as range, resolution, and settling, and the negative channel are configured through the normal AIN registers.

Reading:

When READ_A is read from the LabJack will read from analog inputs, run calculations, then return the result. If the selected index produces
more than one result they will be saved so that they can be read later. Reading from result registers other than A read from the saved values
and do not initiate a new reading.

List of index values:

0: None (disabled)
1: Slope Offset
20: Thermocouple type E
21: Thermocouple type J
22: Thermocouple type K
23: Thermocouple type R
24: Thermocouple type T

Index Values:

1: Slope offset:

Slope-offset allow simple calibration calculations to be performed in the LabJack.

Configuration Registers:
CONFIG_D: CJC_Slope – Custom slope to be applied to the CJC reading. Default is 1.00.
CONFIG_E: CJC_Offset – Custom Offset to be applied to the CJC reading. Default it 0.00.

Result Registers:
READ_A: returns measured volts * slope + offset.

20-24: Thermocouples:

Thermocouple modes read an Analog input connected to a thermocouple and a second specified AIN connected to a CJC sensor. The CJC
slope and offset are used to compute the CJC temperature then the thermocouple temperature is calculated. The on-board temperature
sensor is the default CJC channel.

Thermocouple readings will use ±0.1V for the AIN range if it is set to ±10V. This is to minimize the amount of configuration needed.

Configuration Registers:

http://labjack.com/print/book/export/html/1173

48 of 81 4/8/2014 1:27 PM

CONFIG_A: TC_Options – Bitmask containing additional options. Bits 0 and 1 control temperature units. The default is kelvin. Bit 0: 1 =
Report in ºC, Bit 1: 1 = Report in ºF.
CONFIG_B: CJC_ModbusAddress – This is the modbus address that will be read to acquire the CJC reading. The default is 60052;
TEMPERATURE_DEVICE_K.
CONFIG_D: CJC_Slope – Custom slope to be applied to the CJC reading. Default is 1.00.
CONFIG_E: CJC_Offset – Custom Offset to be applied to the CJC reading. Default it 0.00.

Result Registers:
READ_A: Final calculated temperature.
READ_B: Final voltage used to calculate temperature.
READ_C: CJC Temperature
READ_D: CJC Volts

Analog Extended Features

Name Start Address Type Access Default

AIN#(0:13)_EF_READ_A 7000 FLOAT32 R 0

AIN#(0:13)_EF_READ_B 7300 FLOAT32 R/W 0

AIN#(0:13)_EF_READ_C 7600 FLOAT32 R/W 0

AIN#(0:13)_EF_READ_D 7900 FLOAT32 R 0

AIN#(0:13)_EF_INDEX 9000 UINT32 R/W 0

AIN#(0:13)_EF_CONFIG_A 9300 UINT32 R/W 0

AIN#(0:13)_EF_CONFIG_B 9600 UINT32 R/W 0

AIN#(0:13)_EF_CONFIG_C 9900 UINT32 R/W 0

AIN#(0:13)_EF_CONFIG_D 10200 FLOAT32 R/W 0

AIN#(0:13)_EF_CONFIG_E 10500 FLOAT32 R/W 0

AIN#(0:13)_EF_CONFIG_F 10800 FLOAT32 R/W 0

AIN#(0:13)_EF_CONFIG_G 11100 FLOAT32 R/W 0

AIN#(0:13)_EF_READ_A

Names Addresses

AIN0_EF_READ_A, AIN1_EF_READ_A,

AIN2_EF_READ_A, Show All

7000, 7002, 7004, Show All

AIN#(0:13)_EF_READ_B

Names Addresses

AIN0_EF_READ_B, AIN1_EF_READ_B,

AIN2_EF_READ_B, Show All

7300, 7302, 7304, Show All

AIN#(0:13)_EF_READ_C

Names Addresses

AIN0_EF_READ_C, AIN1_EF_READ_C,

AIN2_EF_READ_C, Show All

7600, 7602, 7604, Show All

AIN#(0:13)_EF_READ_D

Names Addresses

AIN0_EF_READ_D, AIN1_EF_READ_D,

AIN2_EF_READ_D, Show All

7900, 7902, 7904, Show All

AIN#(0:13)_EF_INDEX

An index to specify the feature you want.

Names Addresses

AIN0_EF_INDEX, AIN1_EF_INDEX,

AIN2_EF_INDEX, Show All

9000, 9002, 9004, Show All

AIN#(0:13)_EF_CONFIG_A

Names Addresses

AIN0_EF_CONFIG_A, AIN1_EF_CONFIG_A,

AIN2_EF_CONFIG_A, Show All

9300, 9302, 9304, Show All

AIN#(0:13)_EF_CONFIG_B

Names Addresses

AIN0_EF_CONFIG_B, AIN1_EF_CONFIG_B,

AIN2_EF_CONFIG_B, Show All

9600, 9602, 9604, Show All

http://labjack.com/print/book/export/html/1173

49 of 81 4/8/2014 1:27 PM

AIN#(0:13)_EF_CONFIG_C

Names Addresses

AIN0_EF_CONFIG_C, AIN1_EF_CONFIG_C,

AIN2_EF_CONFIG_C, Show All

9900, 9902, 9904, Show All

AIN#(0:13)_EF_CONFIG_D

Names Addresses

AIN0_EF_CONFIG_D, AIN1_EF_CONFIG_D,

AIN2_EF_CONFIG_D, Show All

10200, 10202, 10204, Show All

AIN#(0:13)_EF_CONFIG_E

Names Addresses

AIN0_EF_CONFIG_E, AIN1_EF_CONFIG_E,

AIN2_EF_CONFIG_E, Show All

10500, 10502, 10504, Show All

AIN#(0:13)_EF_CONFIG_F

Names Addresses

AIN0_EF_CONFIG_F, AIN1_EF_CONFIG_F,

AIN2_EF_CONFIG_F, Show All

10800, 10802, 10804, Show All

AIN#(0:13)_EF_CONFIG_G

Names Addresses

AIN0_EF_CONFIG_G, AIN1_EF_CONFIG_G,

AIN2_EF_CONFIG_G, Show All

11100, 11102, 11104, Show All

$(document).ready(function() { $('.collapsed-content-expander').closest('.content').find('.sometimes-shown').hide(); $('.collapsed-content-
expander').click(function(e) { $(e.target).closest('.content').find('.collapsed-content-expander').fadeOut(function () {
$(e.target).closest('.content').find('.sometimes-shown').fadeIn(); }); return false; }); });

14.1.1 Thermocouples

The AIN extended features system can automatically perform the necessary calculations for Type J, K, thermocouples and a few others.

14.1.2 Offset and Slope

The T7 AIN extended feature system can automatically add a slope or offset to analog readings, the results of which can be read through the
AIN EF registers.

14.2 Special Channels

The T7 has special channels to allow for various analog input features. All the analog inputs (0-13) can be used for single-ended readings.
For differential readings, channels are grouped into pairs, the positive channel is an even number, and the negative channel is odd. Only
adjacent channel numbers can be used as differential, e.g. 0 and 1 form a pair, but 0 and 3 cannot form a pair.

Differential channel pairs

Differential Pair Positive AIN Negative AIN

0 0 1

1 2 3

2 4 5

3 6 7

4 8 9

5 10 11

6 12 13

Other unique analog channels

AIN Function

14 Internal Temperature Sensor (volts)

15,199 Ground (GND)

http://labjack.com/print/book/export/html/1173

50 of 81 4/8/2014 1:27 PM

Special AINs

Name Start Address Type Access Default

AIN#(14:15) 28 FLOAT32 R

AIN#(14:15)

Returns the voltage of the specified analog input.

Names Addresses

AIN14, AIN15 28, 30

It is possible to read GND directly via AIN15, or AIN199. Read more on the temperature sensor in temperature sensor section.

14.3 Extended Channels

The Mux80 is a ready-made analog input expansion board which adds 80 analog inputs when used in conjunction with a T7. The extended
channels can be read using the following registers. For details about differential readings, and physical mapping of pins, see the Mux80
datasheet. Note that when using the Mux80 board, the T7s MIO(0-3) lines are consumed for multiplexer signaling.

Mux80 Extended Channels

Name Start Address Type Access Default

AIN#(48:127) 96 FLOAT32 R

AIN#(48:127)

Returns the voltage of the specified analog input.

Names Addresses

AIN48, AIN49, AIN50, Show All 96, 98, 100, Show All

$(document).ready(function() { $('.collapsed-content-expander').closest('.content').find('.sometimes-shown').hide(); $('.collapsed-content-
expander').click(function(e) { $(e.target).closest('.content').find('.collapsed-content-expander').fadeOut(function () {
$(e.target).closest('.content').find('.sometimes-shown').fadeIn(); }); return false; }); });

15.0 DAC

Output: 0V to 5V

Resolution: 12-bit

Source Impedance: 50 ohms

DAC Registers

Name Start Address Type Access Default

DAC#(0:1) 1000 FLOAT32 R/W

DAC#(0:1)

Pass a voltage for the specified analog output.

Names Addresses

DAC0, DAC1 1000, 1002

Overview

There are two DACs (digital-to-analog converters or analog outputs) on the T7. Each DAC can be set to a voltage between about 0.02 and 5 volts with 12-bits of

resolution.

For electrical specifications, See Appendix TBD.

Although the DAC values are based on an absolute reference voltage, and not the supply voltage, the DAC output buffers are powered internally by Vs and thus

the maximum output is limited to slightly less than Vs.

The DACs appear both on the screw terminals and on the DB37 connector. These connections are electrically the same, and the user must exercise caution only

to use one connection or the other, and not create a short circuit.

Power-up Defaults

The power-up condition of the DACs can be configured by the user. From the factory, the DACS default to enabled at minimum voltage (~0 volts). Note that even

if the power-up default for a line is changed to a different voltage or disabled, there is a delay of about 100 ms at power-up where the DACs are in the factory

default condition.

http://labjack.com/print/book/export/html/1173

51 of 81 4/8/2014 1:27 PM

Protection

The analog outputs can withstand a continuous short-circuit to ground, even when set at maximum output.

Voltage should never be applied to the analog outputs, as they are voltage sources themselves. In the event that a voltage is accidentally applied to either analog

output, they do have protection against transient events such as ESD (electrostatic discharge) and continuous overvoltage (or undervoltage) of a few volts.

Increase Output to ±10V

There is an accessory available from LabJack called the LJTick-DAC that provides a pair of 14-bit analog outputs with a range of ±10 volts.

The LJTick-DAC plugs into any digital I/O block, and thus up to 10 of these can be used per T7 to add 20 analog outputs.

16.0 DB37

Number of Pins: 37

Screw type: #4-40

Contacts: Gold-coated

Form factor: D-Sub

This high-density connector provides access to the T7 features that are not available on the screw terminal edge of

the unit. It brings out analog inputs (AIN), analog outputs (DAC), digital I/O (FIO, MIO), and other signals. Some

signals appear on both the DB37 connector and screw terminals, so care must be taken to avoid a short circuit.

Signals shared between T7 screw terminals and the DB37 are denoted in bold.

Pinout

DB37 Pinouts

1 GND 14 AIN9 27 Vs

2 200uA 15 AIN7 28 Vm+

3 FIO6 16 AIN5 29 DAC1

4 FIO4 17 AIN3 30 GND

5 FIO2 18 AIN1 31 AIN12

6 FIO0 19 GND 32 AIN10

7 MIO1 20 10uA 33 AIN8

8 GND 21 FIO7 34 AIN6

9 Vm- 22 FIO5 35 AIN4

10 GND 23 FIO3 36 AIN2

11 DAC0 24 FIO1 37 AIN0

12 AIN13 25 MIO0

13 AIN11 26 MIO2

DB37 Connector Pinouts

VS, GND, FIO/MIO, AIN, DAC, 200UA/10UA

Descriptions of these can be found in their related sections of this datasheet.

VM+/VM-

Vm+/Vm- are bipolar power supplies intended to power external multiplexer ICs such as the DG408 from Intersil. The multiplexers can only
pass signals within their power supply range, so Vm+/Vm- can be used to pass bipolar signals. Nominal voltage is ±13 volts at no load and
±12 volts at 2.5 mA. Both lines have a 100 ohm source impedance, and are designed to provide 2.5 mA or less. This is the same voltage
supply used internally by the T7 to bias the analog input amplifier and multiplexers. If this supply is loaded more than 2.5 mA, the voltage can
droop to the point that the maximum analog input range is reduced. If this supply is severely overloaded (e.g. short circuited), then damage
could eventually occur. If Vm+/Vm- are used to power multiplexers, series diodes are recommended as shown in Figure 9 of the Intersil
DG408 datasheet. Not so much to protect the mux chips, but to prevent current from going back into Vm+/Vm-. Use Schottky diodes to
minimize voltage drop.

OEM

The OEM T7 has a separate header location to bring out the same connections as the DB37 connector. This OEM header location is labeled
J3. The J3 holes are always present, but are obstructed when the DB37 connector is installed. Find the pinout, and other OEM information
for J3 in OEM Versions.

17.0 DB15

http://labjack.com/print/book/export/html/1173

52 of 81 4/8/2014 1:27 PM

Number of Pins: 15

Screw type: #4-40

Contacts: Gold-coated

Form factor: D-Sub

The DB15 connector brings out 12 additional digital I/O. It has the potential to be used as an expansion
bus, where the 8 EIO are data lines and the 4 CIO are control lines. EIO0-CIO3 can also be addressed
as DIO8-DIO19.

EIO0-EIO7 aka DIO8-DIO15

CIO0-CIO3 aka DIO16-DIO19

The CB15 is connector board that provides convenient screw-terminals for the DB15 lines, but the CB15 is not required. Any method you
see fit can be used to access the DB15 lines.

These 12 channels include an internal series resistor that provides overvoltage/short-circuit protection. These series resistors also limit the
ability of these lines to sink or source current. Refer to the specifications in "Appendix A":/support/u6/users-guide/appendix-a. All digital I/O
on the U6 have 3 possible states: input, output-high, or output-low. Each bit of I/O can be configured individually. When configured as an
input, a bit has a ~100 kΩ pull-up resistor to 3.3 volts. When configured as output-high, a bit is connected to the internal 3.3 volt supply
(through a series resistor). When configured as output-low, a bit is connected to GND (through a series resistor).

DB15 Pinouts

1 Vs 9 CIO0

2 CIO1 10 CIO2

3 CIO3 11 GND

4 EIO0 12 EIO1

5 EIO2 13 EIO3

6 EIO4 14 EIO5

7 EIO6 15 EIO7

8 GND

DB15 Connector Pinouts

OEM

The OEM T7 has a separate header location to bring out the same connections as the DB15 connector. This OEM header location is labeled
J2. The J2 holes are always present, but are obstructed when the DB15 connector is installed. Find the pinout, and other OEM information
for J2 in OEM Versions.

18.0 Internal Temp Sensor

Sensor Range: -50°C to 150°C

T7 Operating Range: -40°C to 85°C

Accuracy (20°C to 40°C): ±1.5°C*

Accuracy (-50°C to 90°C): ±2.1°C*

*Accuracy of measuring device temperature, which is typically warmer than ambient air temperature.

The T7 has an LM94021 temperature sensor connected to internal analog input channel 14 (AIN14). The sensor is physically located on the
bottom of the PCB between the AIN0/1 and AIN2/3 screw-terminals. A reading from AIN14 returns volts, which can be converted to device
temperature using the formula volts*-92.6 + 467.6. Alternatively, read the temperature in degrees Kelvin using the registers
TEMPERATURE_AIR_K and TEMPERATURE_DEVICE_K.

Internal Temp Sensor

Name Start Address Type Access Default

TEMPERATURE_AIR_K 60050 FLOAT32 R

TEMPERATURE_DEVICE_K 60052 FLOAT32 R

TEMPERATURE_AIR_K

Returns the estimated ambient air temperature just outside a T7 in its red plastic enclosure. This register is equal to TEMPERATURE_DEVICE_K - 4.3. If
Ethernet and/or WiFi is enabled, subtract an extra 0.6 for each.

http://labjack.com/print/book/export/html/1173

53 of 81 4/8/2014 1:27 PM

TEMPERATURE_DEVICE_K

Takes a reading from AIN14 using range=+/-10V and resolution=8, and applies the formula Volts*-92.6+467.6 to return degrees K. AIN14 is internally connected
to an LM94021 (U24) with GS=10 which is physically located on the bottom of the PCB between the AIN0/1 and AIN2/3 screw-terminals.

Offset considerations

The unadjusted sensor reading best reflects the temperature of the device inside the enclosure and the temperature of the AIN0-3 screw-
terminals. This is what you get from TEMPERATURE_DEVICE_K in degrees Kelvin.

TEMPERATURE_AIR_K is an estimate of the ambient air temperature outside the device. It is calculated depending on whether Ethernet
and/or WiFi is enabled as follows:

USB TEMPERATURE_AIR_K = TEMPERATURE_DEVICE_K - 4.3
USB & Ethernet TEMPERATURE_AIR_K = TEMPERATURE_DEVICE_K - 4.9
USB & WiFi TEMPERATURE_AIR_K = TEMPERATURE_DEVICE_K - 4.9
USB & Ethernet & WiFi TEMPERATURE_AIR_K = TEMPERATURE_DEVICE_K - 5.5

These offsets were determined from measurements with the enclosure on and in still air. We noted that the time constant was about 12
minutes, meaning that 12 minutes after a step change you are 63% of the way to the new value.

Note on thermocouples

The value from register TEMPERATURE_DEVICE_K best reflects the temperature of the built-in screw-terminals AIN0-AIN3, so use that for
cold junction compensation (CJC) if thermocouples are connected there.

If thermocouples are connected to the CB37, you want to know the temperature of the screw-terminals on the CB37. The CB37 is typically at
the same temperature as ambient air, so use the value from register TEMPERATURE_AIR_K for CJC. Better yet, add a sensor such as the
LM34CAZ to an unused analog input on the CB37 to measure the actual temperature of the CB37.

19.0 RTC

The SD card features are in beta. The T7-Pro has a battery-backed RTC (real-time clock) which is useful for assigning timestamps to data
that is stored on the SD card during scripting operations. Particularly in situations where the device could experience power failure or other
reboots, and does not have a communication connection that can be used to determine real-time after reboot.

As of this writing, the T7-Pro ships with a 2GB SD card, RTC, and battery/battery-holder installed. The T7 has none of these, but does have
the socket installed to hold an SD card.

20.0 Internal Flash

The T7 has a flash built-in flash memory chip, and a micro SD card. The built-in flash is used to store calibration constants, among other
things. The following registers are used to access built-in flash memory. For information about the SD card, see the related section.

61812: Read 1-512 registers starting from this address to get the data. Flash is read in 32-bit chunks, so you must read an even number of
registers. You can only read multiple registers starting from this Modbus address ... you can't read 61812, then read 61814, and so on. The
number of registers you can read at once might be further limited by the maximum packet size of the particular interface ... if you don't want
to worry about that just stick to 13 values (26 registers) or less per read.

For example: To read 8 floats out of memory, starting at external flash address 3948544, initialize the read pointer (Modbus address 61810)
to a value of 3948544 using eWriteAddress(), then read Modbus addresses starting at address 61812 using eReadAddresses(). The read
pointer (address 61810) does not automatically increment.

Calibration Constants

The T7 automatically returns calibrated readings, so most people should not concern themselves with this section.

If the factory applied calibration constants are of interest, they are stored on internal memory and can be accessed at any time through the
use of the Modbus registers listed in the table above.

The cal constants begin at memory address 0x3C4000, or in decimal format 3948544. The structure(location) of each calibration value can
be seen in the code snippet below.

http://labjack.com/print/book/export/html/1173

54 of 81 4/8/2014 1:27 PM

Follow the above example to read out the first 8 values: PSlope, NSlope, Center, Offset (HS Gain= x1), and PSlope, NSlope, Center, Offset
(HS Gain= x10).

typedef struct{

float PSlope;

float NSlope;

float Center;

float Offset;

}Cal_Set;

typedef struct{

Cal_Set HS[4];

Cal_Set HR[4];

struct{

float Slope;

float Offset;

}DAC[2];

float Temp_Slope;

float Temp_Offset;

float ISource_10u;

float ISource_200u;

float I_Bias;

}Device_Calibration;

The full size of the calibration section is 164 bytes, or 41 floats.

The reason that there are 'Cal_Set's for each High Speed 'HS' and High Resolution 'HR', is that there are 2 analog converters on a T7-Pro. A
standard T7 uses only the High Speed analog converter, so only the HS[4] calibration values will be populated with valid information. A
T7-Pro will have calibration information for both high speed, and high resolution converters.

Additionally, there are distinct sets of positive slope(Pslope), negative slope(Nslope), Center, and Offset values for each of the 4 gain settings
on the device.

High speed AIN calibration values HS[4]:
HS[0] = calibration for gain x1
HS[1] = calibration for gain x10
HS[2] = calibration for gain x100
HS[3] = calibration for gain x1000

High resolution (-Pro only) AIN calibration values HR[4]:
HR[0] = calibration for gain x1
HR[1] = calibration for gain x10
HR[2] = calibration for gain x100
HR[3] = calibration for gain x1000

21.0 SD Card

The SD card features are in beta. Note that the SD card is really only useful for people who are using scripting, since all other interactions
with the T7 can be saved to the host PC harddrive.

As of this writing, the T7-Pro ships with a 2GB SD card, RTC, and battery/battery-holder installed. The T7 has none of these, but does have
the socket installed to hold an SD card.

Names are limited to ASCII characters only. Directories and file writing are currently disabled.

Get the name of the current working directory (CWD):

Read from FILE_IO_DIR_CURRENT and FILE_IO_NAME_READ_LEN.1.

Read an array of size FILE_IO_NAME_READ_LEN from FILE_IO_NAME_READ.2.

Get list of items in the CWD:

Read from MA_FILE_IO_DIR_FIRST. The value returned indicates whether anything was found. 0 = something was

found. FILE_IO_NOT_FOUND (2960) indicates that nothing was found.

1.

Read FILE_IO_NAME_READ_LEN, FILE_IO_ATTRIBUTES, and FILE_IO_SIZE.2.

http://labjack.com/print/book/export/html/1173

55 of 81 4/8/2014 1:27 PM

Read an array from FILE_IO_NAME_READ of size FILE_IO_NAME_READ_LEN. This is the name of the file/folder.3.

Read FILE_IO_DIR_NEXT. If the value returned is 2960 we're done, otherwise return to step 2.4.

Get disk size and free space:

Read FILE_IO_DISK_SECTOR_SIZE, FILE_IO_DISK_SECTORS_PER_CLUSTER, FILE_IO_DISK_TOTAL_CLUSTERS, FILE_IO_DISK_FREE_CLUSTERS.

Disk operations are performed when you read sector size, all others are snapshots.

1.

Total size = sector_size * sectorsPerCluser * Total_Clusters. Free size = sector_size * sectorsPerCluser * free_Clusters2.

Read a file:

Write the length of the file name to FILE_IO_NAME_WRITE_LEN1.

Write the name to FILE_IO_NAME_WRITE2.

Read from FILE_IO_OPEN3.

Read file data from FILE_IO_READ4.

read from FILE_IO_CLOSE5.

Registers:

Registers related to writing files and directory creation/destruction are place holders.

// Directory operations

FILE_IO_CHDIR 60600 // u16

FILE_IO_GETDIR 60601 // u16

FILE_IO_MKDIR 60602 // u16

FILE_IO_RMDIR 60603 // u16

// Directory search

FILE_IO_DIR_FIRST 60610 // u16

FILE_IO_DIR_NEXT 60611 // u16

// File operations

FILE_IO_OPEN 60620 // u16

FILE_IO_CLOSE 60621 // u16

FILE_IO_DEL 60622 // u16

FILE_IO_FILE_ATTRIBS 60623 // u16

FILE-IO_FILE_SIZE 60628 // u32

// Disk information

FILE_IO_DISK_SCTRSIZE 60630 // u32

FILE_IO_DISK_SCTSCLST 60632 // u32

FILE_IO_DISK_CLSTRS 60634 // u32

FILE_IO_DISK_FREECLST 60636 // u32

FILE_IO_DISK_FORMAT 60638 // u32

// Names. This is where strings/arrays are hanled.

FILE_IO_NAME_WRITE_LEN 60640 // u32

FILE_IO_NAME_READ_LEN 60642 // u32

FILE_IO_NAME_WRITE 60650 // AAI binary writing

FILE_IO_NAME_READ 60652 // AAI binary reading

FILE_IO_DATA_WRITE 60654 // AAI binary writing

FILE_IO_DATA_READ 60656 // AAI binary reading

22.0 OEM Versions

For pricing/ordering, go to the main T7 Product Page.

The OEM version of the T7 and T7-Pro are shown below. The enclosure, and most connectors are not installed on the OEM version, which
allows customers to choose custom connectors.

http://labjack.com/print/book/export/html/1173

56 of 81 4/8/2014 1:27 PM

The following list describes parts that we know to be compatible with the T7 OEM hole patterns. Simply select a connector from each
category, and we can order the parts and construct a custom OEM. Custom OEM boards carry additional cost, but they are often necessary
for specialized enclosures, and seamless integration with other products.

Of course there are many other connector options available; we can just as easily order/install something not mentioned below. Please don't
hesitate to contact us.

The PCB Dimensions can be found in the Enclosure and PCB Drawings section.

Note: Proper ESD precautions should be taken when handling the PCB directly. Many of the parts are ESD resistant, but depending on the
size of the shock, or location, the board might be damaged.

USB

The USB connector is not installed on the T7 OEM. Reference the T7 PCB dimensions for mechanical mating details. Many through-hole
Type-B USB connectors are compatible. On Shore Technology Inc USB-B1HSW6, FCI 61729-0010BLF, and TE Connectivity 292304-2 are
all good options. The USB connector must be installed on the component side of the PCB.

A special high-retention connector such as the Samtec USBR-B-S-S-O-TH can also be used, but it does take a good deal of force to unplug
a cable from these so they are only recommended when you don't want to unplug very often.

It also possible to simply solder the wires directly, using the image below as a reference.

If you have a shield wire, it can be connected to either of the large mounting holes.

J5 - Alternate Power Supply

Through the use of J5, users can supply 5V to the T7 if a USB connection is not required. The square shaped pad is V+, and the circular pad
is GND. It is useful for individuals who only need Ethernet or WiFi. The J5 connector is a 2 pin 0.1" pitch rectangular header. To prevent
accidentally switching V+ and GND, use a keyed connector such as TE Connectivity 3-641215-2.

J5

1 V+ 2 GND

J5 OEM Pin-Header

The 5V supply from J5 goes through R21 (0.1 ohms) and then connects to the device-wide VS bus. The 5V supply from USB goes through
R15 (0.1 ohms) and then connects to VS. On the T7-T7Pro, R15 & R21 are both installed by default, and thus the connections for both

sources are essentially shorted to each other, and both should not be connected at the same time as one could back-feed the other. If
you are going to connect to J5, and there is a possibility of power at the USB connection also, remove R15. You can also replace R15 and
R21 with diodes (SMA package) to prevent back-feeding, but even Schottky diodes will have voltage drop that needs to be considered.

Ethernet

The same Ethernet connector is installed on all versions of the T7 due to the inherent magnetic complexities. However, it is possible to 'bring

http://labjack.com/print/book/export/html/1173

57 of 81 4/8/2014 1:27 PM

out' a duplicate Ethernet jack to any custom enclosure with one of the following:

A short Ethernet cable segment and an RJ45 coupler(Plug to Plug). These couplers come in a few varieties: Free hanging (in-line),
Chassis Mount, Panel Mount, Bulkhead, Wall Plate, etc. Conec 33TS3101S-88N and Emerson 30-1008KUL are both good options.
A RJ45 Jack to Plug cable, which is just a standard Ethernet plug on one end, and a Jack (female) on the other end. Again, these
come in a wide variety of mounting styles, the simplest of which is the panel mount. TE Connectivity 1546414-4 and Amphenol
RJFEZ2203100BTX are both good options.

If selecting your own Ethernet interconnect, insure that it is RJ45, straight-through, and without magnetics.

WiFi

The WiFi antenna jack is a snap-on/snap-off ultra miniature coaxial connector called male U.FL (aka AMC, IPEX, IPAX, IPX, MHF, UMC or
UMCC). The normal T7-Pro uses a U.FL to bulkhead RP-SMA cable with a length of 140mm, similar to the Emerson 415-0100-150, Laird
1300-00041, Amphenol 336306-14-0150, or Amphenol 336306-12-0150. It also includes a standard RP-SMA 2.4 GHz antenna similar to the
Pulse W1030.

To search for U.FL to RP-SMA cable options at Digikey, go to the "Cable Assemblies => Coaxial Cables (RF)" section, and filter by Style =
"RP-SMA to IPX" or "RP-SMA to MHF1" or "RP-SMA to UMC" or "RP-SMA to UMCC". Then look a the picture and make sure it looks
correct, as the application of the terms male and female are not totally standardized.

As of this writing the T7-Pro-OEM includes the same cable & antenna as the normal T7-Pro, described above.

There are many options for cables and antennas, but one simple option is a wire U.FL whip antenna such as the Anaren 66089-2406 or
Anaren 66089-2430.

JP1-JP6 - Screw terminal Locations

The screw terminals are not installed on the OEM T7. Customers will typically use the rectangular header locations (J2, J3) instead of the
screw terminals. However, if a different screw terminal style is required, it is possible to buy an OEM T7 and order a custom variety. The
screw terminal holes are compatible with almost all 4 position, 0.198" (5.00mm) pitch terminal blocks. A Weidmuller 9993300000 works quite
well, and accepts 14-24 AWG wire.

P2, P3 - DB(D-Sub) Locations

The DB15 and DB37 connectors are not installed on an OEM T7. Customers will typically use the rectangular header locations (J2, J3)
instead of the DB connectors. However, if a different DB mating style is required, it is possible to buy an OEM T7 and order a custom variety.
The DB connectors are standard D-Sub two row receptacles(female sockets), through hole, 15 pin, and 37 pin. The following represent a few
valid options.

FCI 10090099-S154VLF
Sullins Connector Solutions SDS101-PRW2-F15-SN13-1
FCI 10090099-S374VLF
Sullins Connector Solutions SDS101-PRW2-F37-SN83-6

J2, J3 - Header Locations

Connectors J2 and J3 provide pin-header alternatives to the DB15 and DB37 connectors. The J2 and J3 holes are always present, but are
obstructed when the DB15 and DB37 are installed.

J2 - 16 position, 2 row, 0.1" pitch, male pin rectangular header

Unshrouded - Harwin Inc M20-9980846
Unshrouded 3x Taller - Samtec Inc TSW-108-17-T-D
Shrouded, Gold Finish - On Shore Technology Inc 302-S161
Shrouded, Right Angle - TE Connectivity 1-1634689-6

J3 - 40 position, 2 row, 0.1" pitch, male pin rectangular header

Unshrouded - Harwin Inc M20-9762046
Unshrouded 3x Taller - Samtec Inc TSW-120-17-T-D
Shrouded, Gold Finish - On Shore Technology Inc 302-S401
Shrouded, Right Angle - TE Connectivity 5103310-8
Shrouded, Gold-Palladium Finish - TE Connectivity 5104338-8

http://labjack.com/print/book/export/html/1173

58 of 81 4/8/2014 1:27 PM

Sometimes customers order tall pin headers that mate directly to a separate custom PCB. Refer to the pinout details below for electrical
connections.

J2

1 GND 2 VS

3 CIO0 4 CIO1

5 CIO2 6 CIO3

7 GND 8 EIO0

9 EIO1 10 EIO2

11 EIO3 12 EIO4

13 EIO5 14 EIO6

15 EIO7 16 GND

J2 OEM Pin-Header

J3

1 GND 2 GND 3 PIN20 (10uA)

4 PIN2 (200uA) 5 FIO7 6 FIO6

7 FIO5 8 FIO4 9 FIO3

10 FIO2 11 FIO1 12 FIO0

13 MIO0/CIO0 14 MIO1/CIO1 15 MIO2/CIO2

16 GND 17 Vs 18 Vm-

19 Vm+ 20 GND 21 DAC1

22 DAC0 23 GND 24 AIN13

25 AIN12 26 AIN11 27 AIN10

28 AIN9 29 AIN8 30 AIN7

31 AIN6 32 AIN5 33 AIN4

34 AIN3 35 AIN2 36 AIN1

37 AIN0 38 GND 39 GND

40 GND

J3 OEM Pin-Header

J4 - Constant Current Sources

Since the screw terminals are not installed on an OEM T7, the J4 header location can be used to gain access to the constant current
sources. Any 6 position 0.1" pitch rectangular header will work.

J4

1 200uA 2 GND

3 GND 4 GND

5 10uA 6 VS

J4 OEM Pin-Header

J8 - Mechanical

The J8 pin header location is purely for mechanical support for that region of the board. There are no electrical connections to this area. It is
a 2 position 0.1" pitch rectangular header.

Pricing/Ordering

For pricing & ordering, go to the main T7 Product Page.

23.0 Watchdog

The Watchdog system can perform various actions if the T7 does not receive any communication within a specified timeout period.

A typical usage example is a program that enables the watchdog to reset the T7 with a 60 second timeout, and then has a loop that talks to
the device once per second. If something goes wrong with the software, or some other problem that causes communication to stop, the T7
will reset every 10 seconds until communication resumes.

The watchdog timeout can be set as low as 1 second, but such a low value is usually not a good idea. For example, when a USB device

http://labjack.com/print/book/export/html/1173

59 of 81 4/8/2014 1:27 PM

resets it takes a little time for USB to re-enumerate and software to be able to talk to the device again, so you could get in a situation where
the device keeps resetting so often that you can't start talking to it again. This might require using the reset-to-factory jumper (FIO2 <=>
SPC).

Watchdog Registers

Name Start Address Type Access Default

WATCHDOG_ENABLE_DEFAULT 61600 UINT32 R/W 0

WATCHDOG_ADVANCED_DEFAULT 61602 UINT32 R/W 0

WATCHDOG_TIMEOUT_S_DEFAULT 61604 UINT32 R/W 0

WATCHDOG_STARTUP_DELAY_S_DEFAULT 61606 UINT32 R/W 0

WATCHDOG_STRICT_ENABLE_DEFAULT 61610 UINT32 R/W 0

WATCHDOG_STRICT_KEY_DEFAULT 61612 UINT32 R/W 0

WATCHDOG_STRICT_CLEAR 61614 UINT32 W 0

WATCHDOG_RESET_ENABLE_DEFAULT 61620 UINT32 R/W 0

WATCHDOG_DIO_ENABLE_DEFAULT 61630 UINT32 R/W 0

WATCHDOG_DIO_STATE_DEFAULT 61632 UINT32 R/W 0

WATCHDOG_DIO_DIRECTION_DEFAULT 61634 UINT32 R/W

WATCHDOG_DIO_INHIBIT_DEFAULT 61636 UINT32 R/W 0

WATCHDOG_DAC0_ENABLE_DEFAULT 61640 UINT32 R/W 0

WATCHDOG_DAC0_DEFAULT 61642 FLOAT32 R/W 0

WATCHDOG_DAC1_ENABLE_DEFAULT 61650 UINT32 R/W 0

WATCHDOG_DAC1_DEFAULT 61652 FLOAT32 R/W 0

WATCHDOG_ENABLE_DEFAULT

Write a 1 to enable the watchdog or a 0 to disable. The watchdog must be disabled before writing any of the other watchdog registers (except for
WATCHDOG_STRICT_CLEAR).

WATCHDOG_ADVANCED_DEFAULT

A single binary-encoded value where each bit is an advanced option. If bit 0 is set, IO_CONFIG_SET_CURRENT_TO_FACTORY will be done on timeout. If bit 1
is set, IO_CONFIG_SET_CURRENT_TO_DEFAULT will be done on timeout.

WATCHDOG_TIMEOUT_S_DEFAULT

When the device receives any communication over USB/Ethernet/WiFi, the watchdog timer is cleared. If the watchdog timer is not cleared within the timeout
period, the enabled actions will be done.

WATCHDOG_STARTUP_DELAY_S_DEFAULT

This specifies the initial timeout period at device bootup. This is used until the first time the watchdog is cleared or timeout ... after that the normal timeout is
used.

WATCHDOG_STRICT_ENABLE_DEFAULT

Set to 1 to enable strict mode.

WATCHDOG_STRICT_KEY_DEFAULT

When set to strict mode, this is the value that must be written to the clear register.

WATCHDOG_STRICT_CLEAR

When running in strict mode, writing the key to this register is the only way to clear the watchdog.

WATCHDOG_RESET_ENABLE_DEFAULT

Timeout action: Set to 1 to enable device-reset on watchdog timeout.

WATCHDOG_DIO_ENABLE_DEFAULT

Timeout action: Set to 1 to enable DIO update on watchdog timeout.

WATCHDOG_DIO_STATE_DEFAULT

The state high/low of the digital I/O after a Watchdog timeout. See DIO_STATE

WATCHDOG_DIO_DIRECTION_DEFAULT

The direction input/output of the digital I/O after a Watchdog timeout. See DIO_DIRECTION

WATCHDOG_DIO_INHIBIT_DEFAULT

The inhibit mask of the digital I/O after a Watchdog timeout. See DIO_INHIBIT

WATCHDOG_DAC0_ENABLE_DEFAULT

Timeout action: Set to 1 to enable DAC0 update on watchdog timeout.

WATCHDOG_DAC0_DEFAULT

The voltage of DAC0 after a Watchdog timeout.

WATCHDOG_DAC1_ENABLE_DEFAULT

http://labjack.com/print/book/export/html/1173

60 of 81 4/8/2014 1:27 PM

Timeout action: Set to 1 to enable DAC1 update on watchdog timeout.

WATCHDOG_DAC1_DEFAULT

The voltage of DAC1 after a Watchdog timeout.

Example

The most common way to use Watchdog is to write:

WATCHDOG_ENABLE_DEFAULT=0
WATCHDOG_TIMEOUT_S_DEFAULT=60
WATCHDOG_RESET_ENABLE_DEFAULT=1
WATCHDOG_ENABLE_DEFAULT=1

If the device does not receive any communication for 60 seconds, the watchdog will cause the device to reset. So if nothing is talking to the
device, it will reset every 60 seconds.

24.0 IO Config, _DEFAULT

_DEFAULT: Any register with _DEFAULT at the end is non-volatile. Whatever value you write to a _DEFAULT register will be retained
through a reboot or power-cycle.

IO CONFIG: IO Config is a system that concerns the configuration of many registers, mostly related to I/O on the device. This system
includes all writable registers for AIN, DAC, and DIO, among others. IO Config does not include registers that have a _DEFAULT version,
which is ETHERNET, WIFI, and WATCHDOG, among others.

Default: Values at reboot/power-up.
Current: Current values.
Factory: Factory values.

IO Config Registers

Name Start Address Type Access Default

IO_CONFIG_SET_DEFAULT_TO_CURRENT 49002 UINT32 W

IO_CONFIG_SET_DEFAULT_TO_FACTORY 49004 UINT32 W

IO_CONFIG_SET_CURRENT_TO_FACTORY 61990 UINT16 W

IO_CONFIG_SET_CURRENT_TO_DEFAULT 61991 UINT16 W

IO_CONFIG_SET_DEFAULT_TO_CURRENT

Write a 1 to cause new default (reboot/power-up) values to be saved to flash. Current values are retrieved and saved as the new defaults.

IO_CONFIG_SET_DEFAULT_TO_FACTORY

Write a 1 to cause new default (reboot/power-up) values to be saved to flash. Factory values are retrieved and saved as the new defaults.

IO_CONFIG_SET_CURRENT_TO_FACTORY

Write a 1 to set current values to factory configuration. The factory values are retrieved from flash and written to the current configuration registers.

IO_CONFIG_SET_CURRENT_TO_DEFAULT

Write a 1 to set current values to default configuration. The default values are retrieved from flash and written to the current configuration registers, thus this
behaves similar to reboot/power-up.

Example

Use normal current configuration registers to write some values, and then save those as defaults so they are in effect at power-up:

AIN_ALL_RANGE = 0.1 //Set current range of all AIN to +/-0.1V
AIN_ALL_RESOLUTION_INDEX = 12 //Set current resolution index of all AIN to 12.
IO_CONFIG_SET_DEFAULT_TO_CURRENT = 1 //Set power-up defaults to current values.

http://labjack.com/print/book/export/html/1173

61 of 81 4/8/2014 1:27 PM

25.0 Scripting (alpha)

Scripting is actively being developed, be sure to update the JSON constants file and firmware.

For simplicity the last known working set of files is attached below. The T7's firmware, ljm_constants.json, and the program all need to work
together. ljm_constants.json is under c:\programdata\labjack\ljm

Recent Additions/Changes:

New application adds the ability to run a script when the T7 starts up.
New firmware solves a bug with converting constant during compilation.

The T7 can execute Lua code to allow independent operation. This can be used to collect data without a host computer or perform complex
tasks producing simple results that a host can read. And probably other things we haven't thought of.

Getting Started:

Download the two attachments at the bottom of this page. One is example scripts, the other is an application which will load your code
onto the T7 and display any print messages.

1.

Make sure your T7 has 1.0039 or later.2.
Launch Lua_Simple_PoC.exe - an example is already loaded. Connect your T7 to your computer and press run. The temperature will
be displayed 10 times. Now press stop. Note that pressing stop clears the Lua VM, so even if a program has concluded pressing the
stop button is still necessary.

3.

Try out other examples attached to the bottom of this page.4.

Running a script when the T7 powers up.

The T7 can be configured to run a script when it powers on or resets. To use start-up scripts be sure you have the latest Lua_Simple_PoC.
exe and follow the following steps:

Write and test your script.1.
Click "Save to T7. The script will be saved to the T7's flash memory.2.
Click Enable startup script.3.

That's it, now when the T7 completes a start-up or reset it will run your script.

Learning more about Lua:

Learning Lua is very easy. There are good tutorials on Lua.org as well as several other independent sites. If you are familiar with the basics
of programming such as loops and functions then you should be able to get going just by looking at the examples. If you have suggestions or
comments, please email support@labjack.com.

Not sure how to accomplish a goal:

Shoot us an email. We will make a new example and add functions as necessary.

Some things to keep in mind while writing Lua for the T7:

Names are short and cryptic. String length directly affects execution speed and code size.
Based on eLua 0.8 which is based on Lua 5.1.4
Lua supports muti-return: D, T = LJ.TickDelta(LT). Both D and T are returned values.
Library functions are going to be added and changed as I get feedback. Names are likely to change too.
On the T7 Lua's one and only numeric data type is IEEE 754 single precision, aka float. This is more important than it sounds. Here a
good article on floating point numbers and their pitfalls: Floating Point Numbers
Currently examples do not contain any comments. This is because they would consume a lot of code space. Eventually they will be
removed during the loading process.

LabJack's Lua library:

http://labjack.com/print/book/export/html/1173

62 of 81 4/8/2014 1:27 PM

The basic Lua libraries are extended by a LabJack specific library. Below are the available functions.

MB.R:

Value = MB.R(Address, dataType)

Modbus read. Will read a single value from a modbus register. That item can be a u16, u32, a float or a string.

MB.W:

MBW(Address, dataType, value)

Modbus write. Writes a single value to a modbus register. The type can be a u16, u32, a float, or a string.

LJ.ledtog:

Toggles status LED. This is just for testing and will be removed.

LJ.Tick:

Ticks = LJ.Tick()

// Reads the core timer. (1/2 core freq).

LJ.IntervalConfig & LJ.CheckInterval:

IntervalConfig and CheckInterval work together to make an easy to use timing function. Set the desired interval time with IntervalConfig, then
use CheckInterval to watch for timeouts. The interval period will have some jitter but no overall error. Jitter is typically ±30 µs but can be
greater depending on processor loading. A small amount of error is induced when the processor's core speed is changed.

Up to 8 different intervals can be active at a time.

LJ.IntervalConfig(handle, time_ms)

handle: 0-7

time_ms: Number of milliseconds per interval.

timeout LJ.CheckInterval(handle)

handle: 0-7

Returns: 1 if the interval has expired. 0 if not.

Example:

LJ.IntervalConfig(0, 1000)

while true do

 if LJ.CheckInterval(0) then

 --Code to run once per second here.

 end

end

http://labjack.com/print/book/export/html/1173

63 of 81 4/8/2014 1:27 PM

LJ.TickDelta: (Deprecated)

TranspiredTicks, CurrnetTicks = LJ.TickDelta(LastTickCount)

This is the main timing function. When called it will determine how many ticks have transpired since LastTickCount and return current ticks.
The main way to use this is:

local D, T, LT

while true do

 D, T = LJ.TickDelta(LT)

 if D > 40000000 then

 LT = LT + 40000000

 end

end

That will execute the if condition once per second. There will be some jitter depending on what is going on in the processor. But the average
should be spot on.

Lua_SetThrottle:

Set the throttle setting. This controls Lua's processor priority. Value is number of Lua instruction to execute before releasing control to the
normal polling loop. After the loop completes Lua will be given processor time again.

Lua_GetThrottle:

Reads the current throttle setting

dataTypes: // These will need to be made consistent with LJM.

#define DP_U16 0

#define DP_U32 1

#define DP_F 2

#define DP_STRING 3

Modbus IO: (Help me with the name please)

Ram IO consists of a list of modbus addresses where data can be sent to and read from a Lua script.

Data transferring from the Lua script to modbus is handled with simple RAM. Lua writes to the locations and another modbus master can
read that information.

Data transferring to the Lua script, from modbus, is handled differently. When a Lua_IO_Write address is written to the address and data are
stored in a linked list. The linked list is read as a FIFO by the Lua script. This prevents issues arising from write order and multiple writes to

http://labjack.com/print/book/export/html/1173

64 of 81 4/8/2014 1:27 PM

the same address. The dataType currently associated with these operations is Float, F32.

The number of floats dedicated to data transferring to Lua is specified. Note that RAM usage is four times this number.

Associated registers:

#define MA_LUA_NUM_FLOATS 6002

#define MA_LUA_IO_R 46000

#define MA_LUA_IO_W 47000

Lua functions:

IOMem.R

Address, Value = IOMem.R()

Reads from the FIFO a value written to the 47000 range. Address is zero if FIFO is empty.

IOMem.W

void IOMem.W(Address, Value)

Writes to the IO RAM. Values here are simply RAM you can overwrite then and they can be read through modbus at any time.

Example script:

MB.W(6006,1,10)

while true do

 add, val = IOMem.R()

 if add > 0 then

 print(string.format("New MB Write: %0.0f %f", add, val))

 IOMem.W(add - 1000, val + 100)

 end

end

Writing to 6006 sets the number of floats that you would like to allocate to transferring information from Lua. You can now use a host program
to write to the 47000 range, the script will display the address and value received then save that value to a read location. The location is the
write address - 1000 and 100 is added to the value. Read from the 46000 range to see the data.

Examples in the works:

New interval timing function
Low power logging.

Future Features:

http://labjack.com/print/book/export/html/1173

65 of 81 4/8/2014 1:27 PM

Firmware Related:

Save a script to flash
Read a script from flash
Run saved script at startup
New easier to use timing interval function.
Write data to web services such as DAQConnect.

Application (IDE) Related:

Scan for constants that can be converted using Names To Addresses function in LJM.
Scripting tool built into Kipling.
File save and load

Known Issues:

Lua is using a single precision float for its data-type. This means that working with 32-bit integer registers is difficult.

File attachment:

Examples.zip

T7firmware_010078_2014-03-31.bin

ljm_constants.json

Lua_Simple_PoC.zip

Appendix A - Specifications

Specifications for describing the T7 can be broken down into several primary sections with a few sub-sections. Navigate the following
sections to see specifications.

A-1 Data Rates

Command Response Data Rates

Everything besides streaming is done in command/response mode, meaning that all communication is initiated by a command from the host
which is followed by a response from the T7.

All communication performed with the T7 is done using the Modbus TCP protocol. The tests below are done through the LJM library. All
writes & reads are done with a single eNames() call, so LJM will use the minimum number of Modbus packets possible, which usually means
1 packet.

Testing Procedure:

The times shown in these graphs were measured using a LabVIEW program on Windows that executes for 1-10 seconds, and then divides
the total execution time by numIterations to get an average time per iteration. Thus the execution time includes LabVIEW overhead, LJM
library overhead, Windows overhead, communication time (USB/Ethernet/WiFi), and T7 processing time.

A "USB high-high" configuration means the T7 is connected to a high-speed USB2 hub which is then connected to a high-speed USB2 host.
Even though the T7 is not a high-speed USB device, such a configuration does provide improved performance. Typical examples of "USB
other" would be a T7 connected to an old full-speed hub (hard to find) or more likely the T7 is connected directly to the USB host (your PC)
even if the host supports high-speed.

Preemptive Operating Systems and Thread Priority:

It is important to understand that Linux, Mac, and Windows are generally "best-effort" operating systems and not "real-time", meaning that the
speeds below can vary based on each individual computer, the hardware inside of it, its currently enabled peripherals, current network traffic,
strength of signal, design of the application software, other running software, and many more variables.

If you are trying to make a feedback loop that executes reliably at the desired iteration interval, there are various software issues that should
be considered, including thread priority, logging to file, updating the screen, and other programs running on the machine.

Ethernet & USB:

These times are quite predictable. Software issues mentioned above are important, but in terms of hardware the times below will be pretty
consistent. The T7 is not maxing out the bandwidth of the USB or Ethernet interface, and these times can usually be maintained even with
other substantial activity on the bus.

http://labjack.com/print/book/export/html/1173

66 of 81 4/8/2014 1:27 PM

WiFi:

The WiFi times tend to vary much more than USB or Ethernet. With a solid connection most WiFi packets have an overhead of 3-8 ms, but
many will take longer. For example, a test was done in a typical office environment of 1000 iterations that produced an average time of 7.0
ms. 92% of the packets took 3-8 ms, 99% took < 30 ms, and 3 packets took 300 ms.

All WiFi tests were done with an RSSI between -40 (very strong) and -70 (good). An RSSI less than -75 generally reflects a weak connection
and the number of packets that experiences retries goes up quickly. An RSSI greater than -35 reflects a very strong connection, typically
within a few feet of the access point, and also results in increasing numbers of retries due to saturation of the RF signal.

Speed Results:

Below are time results for typical read and write commands to a T7 with no analog inputs:

USB High-High (ms) USB Other (ms) Ethernet (ms) Wifi (ms)

No I/O 0.7 2.1 1.1 7

Read All DI 0.7 2.1 1.1 7

Write All DO 0.7 2.1 1.1 7

Write Both DACs 0.7 2.1 1.1 7

Table 21.2.3.1

Below are results for reading 1 or 8 analog inputs at various gain and resolution indices:

http://labjack.com/print/book/export/html/1173

67 of 81 4/8/2014 1:27 PM

Res
Index

RMS
Res [bits]

1 AIN, USB
[ms]

1 AIN, Eth
[ms]

1 AIN, WiFi
[ms]

8 AIN, USB
[ms]

8 AIN, Eth
[ms]

8 AIN, WiFi
[ms]

Gain = x1 or Range ±10V

1 16.1 0.6 1.1 7 1.0 1.6 7

2 16.4 0.6 1.1 7 1.1 1.7 5

3 16.9 0.6 1.6 7 1.5 1.7 4

4 17.5 0.6 1.6 7 1.5 1.8 4

5 17.9 0.8 1.6 7 2.5 2.6 24

6 18.4 1.0 1.6 7 3.3 3.7 6

7 18.8 1.3 1.7 7 5.8 5.9 8

8 19.0 1.9 2.4 8 10.2 10.3 13

9 19.7 4.8 4.7 10 29.5 29.9 32

10 20.6 14.9 14.8 23 109.3 110.3 113

11 21.3 68.0 68.4 74 533.9 536.5 539

12 22.0 161.0 162.3 164 1,276.9 1,278.4 1,300

Gain = x10 or Range ±1V

1 15.5 0.8 1.7 7 3.0 3.1 6

2 15.9 0.8 1.7 7 3.1 3.2 6

3 16.5 1.3 1.7 7 5.8 5.8 9

4 17.1 1.2 1.6 8 6.0 6.1 8

5 17.5 2.4 2.0 8 10.6 10.7 13

6 18.1 3.6 3.6 8 19.6 19.6 22

7 18.3 3.7 3.9 9 21.7 21.8 24

8 18.7 4.4 4.4 9 26.1 26.2 29

9 19.6 4.8 4.9 10 29.5 29.6 32

10 20.3 14.8 14.8 23 109.3 110.9 133

11 21.3 68.1 69.3 74 533.9 537.4 538

12 21.8 161.0 161.7 164 1,277.0 1,279.5 1,306

Gain = x100 or Range ±0.1V

1 13.9 1.8 2.1 7 9.5 9.6 12

2 14.3 2.9 3.3 8 17.6 17.6 20

3 14.8 6.3 6.4 8 42.0 42.3 44

4 15.3 6.4 6.5 10 42.2 42.2 44

5 15.8 6.4 6.5 11 42.7 43.0 45

6 16.4 11.7 11.6 16 83.8 84.2 86

7 16.8 12.0 12.0 17 86.0 86.6 88

8 17.2 12.5 12.4 18 90.2 91.5 93

9 18.6 4.8 4.8 10 29.6 29.5 32

10 19.3 14.9 14.8 23 109.3 110.0 113

11 19.7 68.1 68.4 74 533.9 538.0 536

12 19.7 161.0 162.6 164 1,277.0 1,278.3 1,300

Gain = x1000 or Range ±0.01V

1 12.1 6.4 6.4 12 41.7 42.1 64

2 12.6 11.5 11.4 16 81.8 82.2 84

3 13.0 11.5 11.4 16 81.9 82.6 85

4 13.5 11.5 11.5 16 82.3 83.5 85

5 14.0 11.6 11.5 17 82.7 82.8 86

6 14.5 11.7 11.6 17 83.8 84.5 90

7 14.9 12.0 11.9 19 85.9 86.3 92

8 15.2 12.5 12.5 20 90.2 91.2 95

9 15.6 4.8 4.8 10 29.6 30.4 37

10 16.2 14.9 14.8 23 109.3 110.0 114

11 16.4 68.1 68.4 74 533.9 536.8 541

12 16.6 160.9 161.9 164 1,277.0 1,278.3 1,283

Table 21.2.3.2

Note 1: Wi-Fi latency varies depending on network traffic and signal strength. 300ms to 900ms is not uncommon.

Streaming Data Rates

The tables related to this section provide typical stream-related performance results. These results are useful for determining what types of
signals can be analyzed using a T7. A T7 is capable of streaming analog data at a steady rate so that various discrete time signal analysis
tools can be utilized to interpret data. Depending on your network speed, congestion, computer performance and other factors, you may be
able to get results faster than displayed below however the typical user should not rely on this extra performance before individual

http://labjack.com/print/book/export/html/1173

68 of 81 4/8/2014 1:27 PM

environment-based testing has been performed. Maximum Speeds will be different based on what interface is being used to stream data,
ethernet or USB. Please note that WiFi streaming is not currently supported.

The data below shows test results from various stream performance parameters. Quite often it may be possible to obtain results indicating
faster performance than what is listed. To obtain performance results matching or exceeding the results below it may be necessary control
various attributes regarding the use of your device. Stream rates can be limited by a number of different factors, USB connection speed,
network traffic, program efficiency, and the running programs priority. Quite often the maximum stream rate is capped by the computer's
processing capabilities as calibration of the data coming from the device is done in LJM instead of on the device to increase performance.

Raw Data

Res. Index Max Stream ENOB ENOB Noise Interchannel

(Samples/s) (RMS) (Noise-Free) (16-bit Counts) Delay (µs)

Gain = x1 or Range ±10V (PRELIMINARY)

1 TBD 16.31 14.28 3.33 15

2 TBD 16.92 14.57 2.72 26

3 TBD 17.30 14.93 2.11 47

4 TBD 17.97 15.59 1.33 94

5 TBD 18.44 16.04 0.98 180

6 TBD 18.91 16.48 0.72 360

7 TBD 19.35 16.96 0.52 720

8 TBD 19.74 17.37 0.39 1,440

Gain = x10 or Range ±1V (PRELIMINARY)

1 TBD 16.03 13.69 5.00 210

2 TBD 16.46 14.10 3.76 220

3 TBD 16.83 14.58 2.69 560

4 TBD 17.53 15.12 1.85 590

5 TBD 17.98 15.62 1.32 1,220

6 TBD 18.50 16.07 0.95 2,450

7 TBD 19.00 16.58 0.67 2,800

8 TBD 19.38 16.98 0.50 3,550

Gain = x100 or Range ±0.1V (PRELIMINARY)

1 TBD 13.83 11.40 24.35 1,040

2 TBD 14.34 11.95 16.62 2,100

3 TBD 14.76 12.33 12.79 4,200

4 TBD 15.28 12.87 8.80 4,250

5 TBD 15.80 13.40 6.08 4,400

6 TBD 16.30 13.86 4.44 4,600

7 TBD 16.76 14.38 3.09 4,900

8 TBD 17.20 14.84 2.26 5,600

Gain = x1000 or Range ±0.01V (PRELIMINARY)

1

2

3

4

5

6

7

8

Table 21.2.4.1

A-2 Digital I/O

General Info

Below you can find information regarding the T7's Digital Input/Output lines.

http://labjack.com/print/book/export/html/1173

69 of 81 4/8/2014 1:27 PM

Parameter Conditions Min Typical Max Units

Low Level Input Voltage -0.3 0.5 Volts

High Level Input Voltage 2.64 5.8 Volts

MaximumInput Voltage (1) FIO -10 10 Volts

EIO/CIO/MIO -6 6 Volts

Output Low Voltage (2) No Load 0.01 Volts

---FIO Sinking 1 mA 0.55 Volts

---EIO/CIO Sinking 1 mA 0.15 Volts

---EIO/CIO Sinking 5 mA 0.75 Volts

Output High Voltage (2) No Load 3.3 Volts

---FIO Sourcing 1 mA 2.75 Volts

---EIO/CIO Sourcing 1 mA 3.15 Volts

---EIO/CIO Sourcing 5 mA 2.6 Volts

Short Circuit Current (2) FIO 6.3 mA

EIO/CIO/MIO 22.9 mA

Output Impedance (2) FIO 550 Ω

EIO/CIO/MIO 180 Ω

(1) Maximum voltage to avoid damage to the device. Protection works whether the device is
powered or not, but continuous voltages over 5.8 volts or less than -0.3 volts are not recommened
when the T7 is unpowered, as the voltage will attempt to supply operating power to the T7 possibly
causing poor start-up behavior.

(2) These specifications provide the answer to the question. "How much current can the digital I/O
sink or source?". For instance, if EIO0 is configured as output-high and shorted to ground, the
current sourced by EIO0 is configured as output-high and shorted to ground, the current sourced by
EIO0 into ground will be about 16 mA (3.3/180). If connected to a load that draws 5 mA, EIO0 can
provide that current but the voltage will droop to about 2.4 volts instead of the nominal 3.3 volts. If
connected to a 180 ohm load to ground, the resulting voltage and current will be about 1.65 volts @
9 mA.

Extended Features

Below you can find information regarding the T7's DIO EF.

Extended Features Conditions Min Typical Max Units

Frequency Output (1) 0.02 5 M Hz

Counter Input Frequency (2) 5 MHz

Input Timer Total Edge Rate (3)(4) No Stream 100 k 140 k edges/s

While Streaming @
50 kHz 30 k edges/s

(1) Frequencies up to 40MHz are possible, but they are heavily filtered.

(2) Hardware counters. 0 to 3.3 volt square wave.

(3) To Avoid missing edges, keep the total number of applicable edges on all applicable
timers below this limit.

(4) Highly dependant on processor loading. Operation such as stream will greatly reduce the
maximum edge rate.

Serial Communication

Below you can find information regarding the T7's Serial Communication abilities. Please keep in mind our devices use 3.3V logic levels and
provide 5V output along the VS screw terminal. Some ICs require the same logic level as provided to the chip's VCC line so extra steps may
be required to integrate specific sensors.

Serial Communication Conditions Min Max Units

SPI Characteristics

Clock Frequencies 0.08718 870 kHz

I2C Characteristics

Clock Frequencies 9.3 472 kHz

A-3 Analog Input

http://labjack.com/print/book/export/html/1173

70 of 81 4/8/2014 1:27 PM

General Info

Below you can find general information regarding the T7's Analog input lines. For further details consult the Noise and Resolution subsection.

Parameter Conditions Min Typical Max Units

Typical Input Range (1) Gain=1 -10.5 10.1 Volts

Max AIN Voltage to GND (2) Valid Readings -11.5 11.5 Volts

Max AIN Voltage to GND (3) No Damage -20 20 Volts

Input Bias Current (4) 20 nA

Input Impedance (4) 1 GΩ

Source Impedance (4) 1 kΩ

Integral Linearity Error Gain=1, 10, 100 ±0.01 %FS

Gain=1000 ±0.1 %FS

Absolute Accuracy Gain=1, 10, 100 ±0.01 %FS

Gain=1000 ±0.1 %FS

Temperature Drift 15 ppm/°C

Noise (Peak-To-Peak) See A-3-1 <1 µV

Effective Resolution (RMS) See A-3-1 22 bits

Noise-Free Resolution See A-3-1 20 bits

(1) Differential or single-ended

(2) This is the maximum voltage on any AIN pin compared to ground for valid
measurements on that channel. For single-ended readings on the channel itself,
inputs are limited by the "Typical Input Range" above, and for differential readings
consult the signal range tables in Appendix-3-2. Further, if a channel has over 13.0
volts compared to ground, readings on other channels could be affected. Because all
even channels are on 1 front-end mux, and all odd channels on a 2nd front-end mux,
an overvoltage (>13V) on a single channel will generally affect only even or only odd
channels.

(3) Maximum voltage, compared to ground, to avoid damage to the device. Protection
level is the same whether the device is powered or not.

(4) The key specification here is the maximum source impedance. As long as the
source impedance is not over this value, there will be no substantial errors due to
impedance problems. For source impedance greater than this value, more settling
time might be needed.

A-3-1 Noise And Resolution

Overview & Testing procedure

The graphs and raw data table under this section provides typical noise levels of the T7 under ideal conditions. The resulting voltage
resolution is then calculated based on the noise levels.

Measurements were taken with AIN0 connected to GND with a short jumper wire, or from internal ground channel #15.

All "counts" data are aligned as 24-bit values. To equate to counts at a particular resolution (Res) use the formula counts/(2^(24-Res)). For
instance, with the T7 set to resolution=1 and the ±10 volt range, there are 1024 counts of noise when looking at 24-bit values. To equate this
to 16-bit data, we take 1024(2^8) which equals 4 counts of noise when looking at 16-bit values.

Noise-free data is determined by taking 2000 readings and subtracting the minimum value from the maximum value.

RMS and Effective data are determined from the standard deviation of 2000 readings. In other words, the RMS data represents most
readings, whereas noise-free data represents all readings.

Graphical Results

The graph below shows the Effective Resolution in bits that the LabJack is able to produce that correlate to a given input voltage at different
gain and resolution-index configurations. It is clear to see that a higher resolution-index produces a more precise result.

Effective Res. (bits) vs Res. Index
Gain=1

Gain=10

Gain=100

Gain=1000

14.5

16

17.5

19

20.5

22

23.5

E
ff

e
c
ti
v
e

 R
e

s
o
lu

ti
o
n

 (
b
it
s
)

http://labjack.com/print/book/export/html/1173

71 of 81 4/8/2014 1:27 PM

The graph below shows the Effective Resolution in µV that the LabJack is able to produce that correlate to a given input voltage at different
gain and resolution-index configurations. It is clear to see that a higher resolution-index produces a more precise result. It also becomes clear
in this graph that choosing a proper gain level that corresponds to the expected voltage is important.

The graph below shows the average time it takes for LabVIEW to capture a single reading for various resolution-index values. The first chart
shows a zoomed in view of the data, the second shows the full range of latencies. When using a T7-Pro the included high resolution
converter starts being used at resolution-index 9. Relating this to the graphs, there is a noticeable drop in command response latency when
jumping from resolution-index 8 to resolution-index 9 at all gain levels. Shown too by these graphs, the high resolution converter has a higher
input impedance than the high speed converter used for resolution-index values 1-8, therefore it requires less time at all gain levels to acquire
data.

Raw Data

The data table below shows all of the information collected to produce the above graphs along with some more useful data pertaining to the
T7.

Effective Res. (µV) vs Res. Index
Gain=1

Gain=10

Gain=100

Gain=1000

1 2 3 4 5 6 7 8 9 10 11 12

1

10

100

Resolution Index

Avg. Latency (ms) vs Res. Index (Zoomed)
Gain=1

Gain=10

Gain=100

Gain=1000

1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10

12

14

16

18

Resolution Index

Avg. Latency (ms) vs Res. Index
Gain=1

Gain=10

Gain=100

Gain=1000

1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

120

140

160

180

Resolution Index

E
ff
e

c
ti
v
e

 R
e

s
o

lu
ti
o

n
 (

µ
V

)
A

v
e
ra

g
e

 L
a
te

n
c
y
 (

m
s
)

A
v
e
ra

g
e

 L
a
te

n
c
y
 (

m
s
)

http://labjack.com/print/book/export/html/1173

72 of 81 4/8/2014 1:27 PM

Resolution

Index

Average

Latency

Rounded

P2P Noise

Peak-To-Peak

Resolution

Noise-Free

Resolution

Rounded

RMS Noise

Effective

Resolution

Effective

Resolution

ms 24-bit counts bits µV 24-bit counts bits µV

Gain/Range: 1/±10

1 0.5 1280 13.7 1579.4 197 16.4 243.5

2 0.5 768 14.4 947.7 141 16.9 174.2

3 0.5 640 14.7 789.7 97 17.4 119.8

4 0.5 512 15 631.8 78 17.7 95.8

5 0.5 384 15.4 473.8 55 18.2 68.3

6 0.7 256 16 315.9 40 18.7 49.4

7 1 192 16.4 236.9 30 19.1 37.4

8 1.6 128 17 157.9 22 19.6 26.8

9 4.3 157 16.7 193.8 22 19.6 26.9

10 14.5 79 17.7 97.5 11 20.5 13.9

11 67.6 39 18.7 48.1 6 21.5 6.9

12 160.5 33 19 40.7 4 21.9 5.4

Gain/Range: 10/±1

1 0.6 2048 13 252.7 280 15.9 34.5

2 0.6 1408 13.5 173.7 202 16.3 25

3 1 1280 13.7 157.9 156 16.7 19.3

4 1 832 14.3 102.6 122 17.1 15.1

5 1.7 512 15 63.2 95 17.4 11.7

6 3 448 15.2 55.3 60 18.1 7.4

7 3.3 256 16 31.6 40 18.7 5

8 3.9 256 16 31.6 32 19 3.9

9 4.3 173 16.6 21.4 23 19.5 2.9

10 14.5 91 17.5 11.2 12 20.4 1.5

11 67.6 61 18.1 7.5 7 21.2 0.8

12 160.5 43 18.6 5.3 5 21.6 0.7

Gain/Range: 100/±0.1

1 1.5 12545 10.4 154.8 1328 13.6 16.4

2 2.7 9601 10.8 118.4 874 14.2 10.8

3 5.9 7232 11.2 89.2 665 14.6 8.2

4 6 6400 11.4 79 516 15 6.4

5 6 5312 11.6 65.5 373 15.5 4.6

6 11.2 2944 12.5 36.3 252 16 3.1

7 11.4 1856 13.1 22.9 168 16.6 2.1

8 12.1 1472 13.5 18.2 127 17 1.6

9 4.3 1604 13.4 19.8 76 17.8 0.9

10 14.5 503 15 6.2 39 18.7 0.5

11 67.5 335 15.6 4.1 25 19.4 0.3

12 160.5 285 15.8 3.5 22 19.6 0.3

Gain/Range: 1000/±0.01

1 5.8 68818 7.9 84.9 4354 11.9 5.4

2 10.9 80075 7.7 98.8 3300 12.3 4.1

3 10.9 89828 7.5 110.8 2877 12.5 3.5

4 10.9 49375 8.4 60.9 1778 13.2 2.2

5 11 35113 8.9 43.3 1362 13.6 1.7

6 11.1 38950 8.8 48 1413 13.5 1.7

7 11.4 22129 9.6 27.3 822 14.3 1

8 11.9 10425 10.7 12.9 643 14.7 0.8

9 4.3 7622 11.1 9.4 437 15.2 0.5

10 14.4 2837 12.5 3.5 285 15.8 0.4

11 68.2 1725 13.2 2.1 210 16.3 0.3

12 163.5 2102 13 2.6 171 16.6 0.2

Table 21.2.2.1

A-3-2 Signal Range

The following figures show the approximate signal range of the T7 analog inputs. "Input Common-Mode Voltage" or Vcm is (Vpos + Vneg)/2.

Keep in mind that the voltage of any input compared to GND should be within the Vm+ and Vm- rails by at least 1.5 volts, so if Vm is the
typical ±13 volts, the signals should be within ±11.5 volts compared to GND.

Example #1: Say a differential signal is measured where Vpos is 10.05 volts compared to GND and Vneg is 9.95 volts compared to ground,
and G=100. That means Vcm=10.0 volts, Vdiff=0.1 volts, and the expected Vout=10.0 volts. There is not figure for G=100 below, but
Vcm=10.0 volts and Vout=10.0 volts is not valid at G=1 or G=1000, so is certainly not valid in between.

http://labjack.com/print/book/export/html/1173

73 of 81 4/8/2014 1:27 PM

Example #2: Say a differential signal is measured where Vpos is 15.0 volts compared to GND and Vneg is 14.0 volts compared to ground,
and G=1. That means Vcm=14.5 volts, Vdiff=1.0 volts, and the expected Vout=1.0 volts. The voltage of each input compared to GND is too
high, so this would not work at all.

Example #3: Say a single-ended signal is measured where Vpos is 10.0 volts compared to GND and G=1.; That means Vcm=5.0 volts,
Vdiff=10.0 volts, and the expected Vout=10.0 volts. This is fine according to the figure below.

http://labjack.com/print/book/export/html/1173

74 of 81 4/8/2014 1:27 PM

A-4 Analog Output

21.3.0 General Information

The T7 supports two analog output channels labeled "DAC0" and "DAC1". General characteristics of the two channels are available below.

Parameter Conditions Min Typical Max Units

Nominal Output Range (1) No Load 0.01 4.99 Volts

@ ±2.5 mA 0.25 .0.25 Volts

Resolution 12 Bits

Absolute Accuracy 5% to 95% FS TBD % FS

Integral Linearity Error ±1.5 ±2 counts

Differential Linearity Error ±0.25 ±0.5 counts

Error Due To Loading @ 100 µA 0.15 %

@ 1mA 2.3 %

Source Impedance TBD Ω

Short Circuit Current (2) Max to GND 20.5 mA

Time Constant 4 µs

(1) Maximum and minimum analog output voltage is limited by the supply voltages (Vs and GND). The
specifications assume Vs is 5.0 volts. Also, the ability of the DAC output buffer to driver voltages close
to the power rails, decreases with increasing output current, but in most applications the output is not
sinking/source much current as the output voltage approaches GND.

(2) Continuous short circuit will not cause damage.

21.3.1 Speed and Settling

Below you can find some characteristics involving the speed & settling times of the DAC channels.

TBD.

A-5 General Specs

Supply

The following table shows the supply voltage that is required by the T7. The USB hub, or 5V USB adapter should fall within the acceptable
range.

Parameter Condition Min Typical Max Units

Supply Voltage 4.75 5.25 Volts

Supply Current No connected loads 8.1 250 mA

Power Consumption

The T7 has several power domains. USB and Core speed are not yet ready user level control, but have been included in the following table
to show the capabilities of the device. The values shown are typical.

Core Speed Eth (1) Eth Linked AINs WiFi WiFi Linked LEDs USB (1) Draw (mA)

80M ON Yes ON ON Yes ON ON 290

80M ON Yes ON ON No ON ON 285

80M ON Yes ON OFF No ON ON 253

80M ON No ON OFF No ON ON 210

80M OFF No ON OFF No ON ON 174

80M OFF No OFF OFF No ON ON 142

80M OFF No OFF OFF No OFF ON 105

80M OFF No OFF OFF No OFF OFF 79

20M OFF No OFF OFF No OFF OFF 23

2M OFF No OFF OFF No OFF OFF 8.8

250k OFF No OFF OFF No OFF OFF 8.1

1) Ethernet and USB require that the core be running at least 20MHz.

200µA and 100µA Current Sources

http://labjack.com/print/book/export/html/1173

75 of 81 4/8/2014 1:27 PM

Parameter Condition Min Typical Max Units

Absolute Accuracy ~ 25 °C ±0.1 ±0.2 %

Temperature Coefficient TBD ppm/°C

Maximum Voltage VS - 2.0 volts

VM+/VM-

Parameter Condition Min Typical Max Units

Typical Voltage No-load ±13 volts

@ 2.5 mA ±12 volts

Maximum Current 2.5 mA

System Clock

Parameter Condition Min Typical Max Units

Clock Error ~ 25 °C ±20 ppm

-10 to 60 °C ±50 ppm

-40 to 85 °C ±100 ppm

Mechanical

Parameter Condition Min Typical Max Units

USB Cable Length 2 5 meters

Operating Temperature -40 85 °C

Screw Terminal Wire Gauge 26 14 AWG

Mounting Screws wood screw sizes #4 #6 #8

Appendix B - Enclosure and PCB Drawings

See below drawings of the T7.

The square holes on the back of the enclosure are for DIN rail mounting adapters (TE Connectivity(formerly Tyco) part #TKAD), or Newark
PN 50F2979.

CAD drawings of the T7 enclosure are attached to the bottom of this page. (DWG, DXF, IGES, STEP)

http://labjack.com/print/book/export/html/1173

76 of 81 4/8/2014 1:27 PM

http://labjack.com/print/book/export/html/1173

77 of 81 4/8/2014 1:27 PM

http://labjack.com/print/book/export/html/1173

78 of 81 4/8/2014 1:27 PM

T7 OEM PCB Dimensions

http://labjack.com/print/book/export/html/1173

79 of 81 4/8/2014 1:27 PM

File attachment:

T7 Enclosure DWG

T7 Enclosure DXF

T7 Enclosure IGS

T7 PCB Dimensions

T7 Enclosure STEP

T7 Pro Enclosure DWG

T7 Pro Enclosure DXF

T7 Pro Enclosure IGS

T7 Pro Enclosure STEP

Appendix C - Firmware Revision History

The latest T7 firmware is listed on the T7 firmware page. You will need the Kipling software program to load the firmware files onto a T7. Also
use Kipling to identify the current WiFi and Firmware versions on your T7.

Change Log

1.0017: Updated I2C so higher numbers correspond to higher speeds. Fixed a bug causing bad data to be read from power settings.
Attempted to alleviate an erroneous stream overlap error when starting stream. Updated stream to support O-Stream using modbus
addresses. Changed wifi to set the ping and reset timers to 150% normal times after receiving a modbus packet. Updated to USB 2.9.
Factory jumper will now reset Ethernet, Power, WiFi, IO, and Watchdog settings. Fixed a bug that prevented stream out from accepting data
as an array. Fixed a bug that could cause random error codes when enabling the swdt. AIN14 will now return volts instead of kelvin. Device
and ambient temperature registers added.

1.0000: Stream features added and timing calibrated. Stream bug fixes. I2C modbus interface updated. Added z-phase support to
quadrature. Digital EF bug fixes and feature additions.

Click To Expand Full Change Log

Appendix D - Packaging Information

Package Contents:

The normal retail packaged T7 or T7-Pro consists of:

 T7 (-Pro) unit itself in red enclosure
 USB cable (6ft / 1.8m)
 Ethernet Cable (6ft / 1.8m)
 USB 5V power supply
 Screwdriver
 Antenna (T7-Pro only)

http://labjack.com/print/book/export/html/1173

80 of 81 4/8/2014 1:27 PM

Other package details:

There is no software CD included, so an internet connection is required to download software. Go to the T7 Support Homepage
(labjack.com/support/t7) to get started.

Contact support@labjack.com for additional information on shipping.

Package size: 10" x 7" x 3"
Package wt: 1.2lb

Appendix E - Datasheet Revision History

Revision E (Feb 2014) Added sections for Flash Memory, SD Card, Stream-Out, and SPI. The internal temperature sensor section now has
complete information. Also updated a few descriptions to registers. Moved SPI, I2C, and Digital I/O Extended Features into Digital I/O. Moved
many sections into appendices - most notably the specifications page is now Appendix A.

Revision D (Jan 2014) Added Scripting, I2C sections, updated many sections to include register information directly from the constants file.
Updated DIO_EF information.

Revision C (Oct 2013) Added calibration constants information. Modified URLs. Updated many links to related support material. Updated
DIO information.

Revision B (April 2013) Added many descriptions of Digital I/O extended features. Modified a bunch of URLs.

Revision A (February 2013) Original data sheet for the T7 family of devices.

http://labjack.com/print/book/export/html/1173

81 of 81 4/8/2014 1:27 PM

